Sequential completeness and regularityof inductive limits of webbed spaces
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 329-332
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Any inductive limit of bornivorously webbed spaces is sequentially complete iff it is regular.
Any inductive limit of bornivorously webbed spaces is sequentially complete iff it is regular.
Classification :
46A04, 46A13
Keywords: localy convex space; webbed space; sequential completeness; regularity of an inductive limit
Keywords: localy convex space; webbed space; sequential completeness; regularity of an inductive limit
@article{CMJ_2002_52_2_a7,
author = {Bosch, Carlos and Ku\v{c}era, Jan},
title = {Sequential completeness and regularityof inductive limits of webbed spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {329--332},
year = {2002},
volume = {52},
number = {2},
mrnumber = {1905439},
zbl = {1075.46502},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a7/}
}
Bosch, Carlos; Kučera, Jan. Sequential completeness and regularityof inductive limits of webbed spaces. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 329-332. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a7/
[1] M. De Wilde: Closed Graph Theorem and Webbed Spaces. Pitman, 1978.
[2] G. Köthe: Topological Vector Spaces II. Springer-Verlag, 1979. | MR
[3] W. Robertson: On the closed graph theorem with webs. Proc. London Math. Soc. 24 (1972), 692–738. | MR
[4] J. Kučera, C. Bosch: Bounded sets in fast complete inductive limits. Internat J. Math. 7 (1984), 615–617. | DOI | MR
[5] J. Kučera: Sequential completeness of $LF$-spaces. Czechoslovak Math. J 51 (2001), 181–183. | DOI | MR