@article{CMJ_2002_52_2_a6,
author = {Albrecht, Ulrich and Giovannitti, Tony and Goeters, Pat},
title = {A class of torsion-free abelian groups characterized by the ranks of their socles},
journal = {Czechoslovak Mathematical Journal},
pages = {319--327},
year = {2002},
volume = {52},
number = {2},
mrnumber = {1905438},
zbl = {1013.13007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a6/}
}
TY - JOUR AU - Albrecht, Ulrich AU - Giovannitti, Tony AU - Goeters, Pat TI - A class of torsion-free abelian groups characterized by the ranks of their socles JO - Czechoslovak Mathematical Journal PY - 2002 SP - 319 EP - 327 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a6/ LA - en ID - CMJ_2002_52_2_a6 ER -
%0 Journal Article %A Albrecht, Ulrich %A Giovannitti, Tony %A Goeters, Pat %T A class of torsion-free abelian groups characterized by the ranks of their socles %J Czechoslovak Mathematical Journal %D 2002 %P 319-327 %V 52 %N 2 %U http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a6/ %G en %F CMJ_2002_52_2_a6
Albrecht, Ulrich; Giovannitti, Tony; Goeters, Pat. A class of torsion-free abelian groups characterized by the ranks of their socles. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 319-327. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a6/
[1] D. A. Arnold: Finite Rank Torsion-Free Abelian Groups and Rings, LNM 931. Springer-Verlag, 1982. | MR
[2] D. M. Arnold and C. I. Vinsonhaler: Finite rank Butler groups, a survey of recent results. In: Abelian Groups. Lecture Notes in Pure and Appl. Math. 146, Marcel Dekker, 1993, pp. 17–42. | MR
[3] U. F. Albrecht and H. P. Goeters: Butler theory over Murley groups. J. Algebra 200 (1998), 118–133. | DOI | MR
[4] L. Fuchs and C. Metelli: On a class of Butler groups. Manuscripta Math. 71 (1991), 1–28. | DOI | MR
[5] H. P. Goeters: An extension of Warfield duality for abelian groups. J. Algebra 180 (1996), 848–861. | DOI | MR | Zbl
[6] H. P. Goeters and Ch. Megibben: Quasi-isomorphism invariants and ${\mathbb{Z}}_2$-representations for a class of Butler groups. Rendiconte Sem. Mat. Univ. of Padova (to appear).
[7] H. P. Goeters, W. Ullery and Ch. Vinsonhaler: Numerical invariants for a class of Butler groups. Contemp. Math. 171 (1994), 159–172. | DOI | MR
[8] P. Hill and C. Megibben: The classification of certain Butler groups. J. of Algebra 160 (2) (1993), 524–551. | DOI | MR
[9] W. Y. Lee: Codiagonal Butler groups. Chinese J. Math. 17 (1989), 259–271. | MR
[10] E. Matlis: Torsion-Free Modules. University of Chicago Press, 1972. | MR | Zbl
[11] H. Matsumura: Commutative Ring Theory. Cambridge University Press, 1980. | MR
[12] F. Richman: An extension of the theory of completely decomposable torsion-free abelian groups. Trans. Amer. Math. Soc. 279 (1983), 175–185. | DOI | MR | Zbl
[13] J. J. Rotman: An Introduction to Homological Algebra. Academic Press, 1979. | MR | Zbl
[14] R. B. Warfield: Homomorphisms and duality for abelian groups. Math. Z. 107 (1968), 189–212. | DOI | MR