A class of torsion-free abelian groups characterized by the ranks of their socles
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 319-327 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Butler groups formed by factoring a completely decomposable group by a rank one group have been studied extensively. We call such groups, bracket groups. We study bracket modules over integral domains. In particular, we are interested in when any bracket $R$-module is $R$ tensor a bracket group.
Butler groups formed by factoring a completely decomposable group by a rank one group have been studied extensively. We call such groups, bracket groups. We study bracket modules over integral domains. In particular, we are interested in when any bracket $R$-module is $R$ tensor a bracket group.
Classification : 13A15, 13B22, 13C13, 13F05, 13G05, 20K15
Keywords: Dedekind domain
@article{CMJ_2002_52_2_a6,
     author = {Albrecht, Ulrich and Giovannitti, Tony and Goeters, Pat},
     title = {A class of torsion-free abelian groups characterized by the ranks of their socles},
     journal = {Czechoslovak Mathematical Journal},
     pages = {319--327},
     year = {2002},
     volume = {52},
     number = {2},
     mrnumber = {1905438},
     zbl = {1013.13007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a6/}
}
TY  - JOUR
AU  - Albrecht, Ulrich
AU  - Giovannitti, Tony
AU  - Goeters, Pat
TI  - A class of torsion-free abelian groups characterized by the ranks of their socles
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 319
EP  - 327
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a6/
LA  - en
ID  - CMJ_2002_52_2_a6
ER  - 
%0 Journal Article
%A Albrecht, Ulrich
%A Giovannitti, Tony
%A Goeters, Pat
%T A class of torsion-free abelian groups characterized by the ranks of their socles
%J Czechoslovak Mathematical Journal
%D 2002
%P 319-327
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a6/
%G en
%F CMJ_2002_52_2_a6
Albrecht, Ulrich; Giovannitti, Tony; Goeters, Pat. A class of torsion-free abelian groups characterized by the ranks of their socles. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 319-327. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a6/

[1] D. A. Arnold: Finite Rank Torsion-Free Abelian Groups and Rings, LNM 931. Springer-Verlag, 1982. | MR

[2] D. M. Arnold and C. I. Vinsonhaler: Finite rank Butler groups, a survey of recent results. In: Abelian Groups. Lecture Notes in Pure and Appl. Math. 146, Marcel Dekker, 1993, pp. 17–42. | MR

[3] U. F. Albrecht and H. P.  Goeters: Butler theory over Murley groups. J. Algebra 200 (1998), 118–133. | DOI | MR

[4] L. Fuchs and C.  Metelli: On a class of Butler groups. Manuscripta Math. 71 (1991), 1–28. | DOI | MR

[5] H. P. Goeters: An extension of Warfield duality for abelian groups. J.  Algebra 180 (1996), 848–861. | DOI | MR | Zbl

[6] H. P.  Goeters and Ch.  Megibben: Quasi-isomorphism invariants and ${\mathbb{Z}}_2$-representations for a class of Butler groups. Rendiconte Sem. Mat. Univ. of Padova (to appear).

[7] H. P. Goeters, W.  Ullery and Ch. Vinsonhaler: Numerical invariants for a class of Butler groups. Contemp. Math. 171 (1994), 159–172. | DOI | MR

[8] P. Hill and C.  Megibben: The classification of certain Butler groups. J.  of Algebra 160 (2) (1993), 524–551. | DOI | MR

[9] W. Y. Lee: Codiagonal Butler groups. Chinese J.  Math. 17 (1989), 259–271. | MR

[10] E. Matlis: Torsion-Free Modules. University of Chicago Press, 1972. | MR | Zbl

[11] H. Matsumura: Commutative Ring Theory. Cambridge University Press, 1980. | MR

[12] F. Richman: An extension of the theory of completely decomposable torsion-free abelian groups. Trans. Amer. Math. Soc. 279 (1983), 175–185. | DOI | MR | Zbl

[13] J. J. Rotman: An Introduction to Homological Algebra. Academic Press, 1979. | MR | Zbl

[14] R. B. Warfield: Homomorphisms and duality for abelian groups. Math. Z. 107 (1968), 189–212. | DOI | MR