Keywords: derived projective limit functor; Retakh’s condition; weakly acyclic (LF)-spaces
@article{CMJ_2002_52_2_a4,
author = {Bonet, J. and Dierolf, S. and Wengenroth, J.},
title = {Strong duals of projective limits of {(LB)-spaces}},
journal = {Czechoslovak Mathematical Journal},
pages = {295--307},
year = {2002},
volume = {52},
number = {2},
mrnumber = {1905436},
zbl = {1075.46501},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a4/}
}
Bonet, J.; Dierolf, S.; Wengenroth, J. Strong duals of projective limits of (LB)-spaces. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 295-307. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a4/
[1] K. D.Bierstedt and J. Bonet: Biduality in (LF)-spaces. Preprint 1998. | MR
[2] J. Bonet and S. Dierolf: A note on the biduals of strict (LF)-spaces. Results Math. 13 (1988), 23–32. | DOI | MR
[3] J. Bonet and S. Dierolf: On distinguished Fréchet spaces. In: Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 201–214. | MR
[4] J. Bonet and P. Domański: Real analytic curves in Fréchet spaces and their duals. Monatshefte Math. 126 (1998), 13–36. | DOI | MR
[5] R. W. Braun, R. Meise and D. Vogt: Applications of the projective limit functor to convolutions and partial differential equations. In: Advances in the Theory of Fréchet Spaces, T. Terzioǧlu (ed.), Kluwer, NATO ASF Ser. C, Vol. 287, Dordrecht, 1989, pp. 29–46. | MR
[6] R. W. Braun and D. Vogt: A sufficient condition for $\mathop {\mathrm Proj}^1$ = 0. Michigan Math. J. 44 (1996), 149–156. | MR
[7] S. Dierolf, L. Frerick, E. Mangino and J. Wengenroth: Examples on projective spectra of (LB)-spaces. Manuscripta Math. 88 (1995), 171–175. | DOI | MR
[8] L. Frerick and J. Wengenroth: A sufficient condition for vanishing of the derived projective limit functor. Archiv Math. (Basel) 67 (1996), 296–301. | DOI | MR
[9] A. Grothendieck: Sur les espace (F) et (DF). Summa Brasil. Math. 3 (1954), 57–122. | MR
[10] H. Komatsu: Ultradistributions I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokio 20 (1973), 25–105. | MR | Zbl
[11] R. Meise and D. Vogt: Introduction to Functional Analysis. Clavendon Press, Oxford, 1997. | MR
[12] V. P. Palamodov: The projective limit functor in the category of linear topological spaces. Mat. Sbornik 75 (1968), 567–603. (Russian) | MR | Zbl
[13] V. P. Palamodov: Homological methods in the theory of locally convex spaces. Uspekhi Mat. Nauk 26 (1971), 3–65. (Russian) | MR | Zbl
[14] P. Pérez Carreras and J. Bonet: Barrelled Locally Convex Spaces. North-Holland Mathematics Studies, Vol. 131, 1987. | MR
[15] D. Vogt: On the functors $\mathop {\mathrm Ext}^1(E,F)$ for Fréchet spaces. Studia Math. 85 (1987), 163–197. | DOI | MR
[16] D. Vogt: Lectures on projective spectra of (DF)-spaces. Seminar lectures, AG Funktionalanalysis Düsseldorf/Wuppertal (1987).
[17] D. Vogt: Topics on projective spectra of (LB)-spaces. In: Advances in the Theory of Fréchet Spaces, T. Terzioǧlu (ed.), Kluwer, NATO ASF Ser. C, Vol. 287, Dordrecht, 1989, pp. 11–27. | MR | Zbl
[18] D. Vogt: Regularity properties of (LF)-spaces. In: Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 57–84. | MR | Zbl
[19] J. Wengenroth: Acyclic inductive spectra of Fréchet spaces. Studia Math. 120 (1996), 247–258. | DOI | MR | Zbl
[20] J. Wengenroth: A new characterization of $\mathop {\mathrm Proj}^1 {\mathcal X}=0$ for countable spectra of (LB)-spaces. Proc. Amer. Math. Soc. 127 (1999), 737–744. | DOI | MR