Strong duals of projective limits of (LB)-spaces
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 295-307 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the problem when the strong dual of a projective limit of (LB)-spaces coincides with the inductive limit of the strong duals. It is well-known that the answer is affirmative for spectra of Banach spaces if the projective limit is a quasinormable Fréchet space. In that case, the spectrum satisfies a certain condition which is called “strong P-type”. We provide an example which shows that strong P-type in general does not imply that the strong dual of the projective limit is the inductive limit of the strong duals, but on the other hand we show that this is indeed true if one deals with projective spectra of retractive (LB)-spaces. Finally, we apply our results to a question of Grothendieck about biduals of (LF)-spaces.
We investigate the problem when the strong dual of a projective limit of (LB)-spaces coincides with the inductive limit of the strong duals. It is well-known that the answer is affirmative for spectra of Banach spaces if the projective limit is a quasinormable Fréchet space. In that case, the spectrum satisfies a certain condition which is called “strong P-type”. We provide an example which shows that strong P-type in general does not imply that the strong dual of the projective limit is the inductive limit of the strong duals, but on the other hand we show that this is indeed true if one deals with projective spectra of retractive (LB)-spaces. Finally, we apply our results to a question of Grothendieck about biduals of (LF)-spaces.
Classification : 46A08, 46A13, 46A20, 46M15
Keywords: derived projective limit functor; Retakh’s condition; weakly acyclic (LF)-spaces
@article{CMJ_2002_52_2_a4,
     author = {Bonet, J. and Dierolf, S. and Wengenroth, J.},
     title = {Strong duals of projective limits of {(LB)-spaces}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {295--307},
     year = {2002},
     volume = {52},
     number = {2},
     mrnumber = {1905436},
     zbl = {1075.46501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a4/}
}
TY  - JOUR
AU  - Bonet, J.
AU  - Dierolf, S.
AU  - Wengenroth, J.
TI  - Strong duals of projective limits of (LB)-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 295
EP  - 307
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a4/
LA  - en
ID  - CMJ_2002_52_2_a4
ER  - 
%0 Journal Article
%A Bonet, J.
%A Dierolf, S.
%A Wengenroth, J.
%T Strong duals of projective limits of (LB)-spaces
%J Czechoslovak Mathematical Journal
%D 2002
%P 295-307
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a4/
%G en
%F CMJ_2002_52_2_a4
Bonet, J.; Dierolf, S.; Wengenroth, J. Strong duals of projective limits of (LB)-spaces. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 295-307. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a4/

[1] K. D.Bierstedt and J.  Bonet: Biduality in (LF)-spaces. Preprint 1998. | MR

[2] J. Bonet and S.  Dierolf: A note on the biduals of strict (LF)-spaces. Results Math. 13 (1988), 23–32. | DOI | MR

[3] J. Bonet and S. Dierolf: On distinguished Fréchet spaces. In: Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 201–214. | MR

[4] J. Bonet and P.  Domański: Real analytic curves in Fréchet spaces and their duals. Monatshefte Math. 126 (1998), 13–36. | DOI | MR

[5] R. W. Braun, R. Meise and D.  Vogt: Applications of the projective limit functor to convolutions and partial differential equations. In: Advances in the Theory of Fréchet Spaces, T. Terzioǧlu (ed.), Kluwer, NATO ASF Ser.  C, Vol. 287, Dordrecht, 1989, pp. 29–46. | MR

[6] R. W. Braun and D.  Vogt: A sufficient condition for $\mathop {\mathrm Proj}^1$ = 0. Michigan Math. J. 44 (1996), 149–156. | MR

[7] S. Dierolf, L. Frerick, E.  Mangino and J. Wengenroth: Examples on projective spectra of (LB)-spaces. Manuscripta Math. 88 (1995), 171–175. | DOI | MR

[8] L. Frerick and J.  Wengenroth: A sufficient condition for vanishing of the derived projective limit functor. Archiv Math. (Basel) 67 (1996), 296–301. | DOI | MR

[9] A. Grothendieck: Sur les espace  (F) et  (DF). Summa Brasil. Math. 3 (1954), 57–122. | MR

[10] H. Komatsu: Ultradistributions I. Structure theorems and a characterization. J.  Fac. Sci. Univ. Tokio 20 (1973), 25–105. | MR | Zbl

[11] R.  Meise and D.  Vogt: Introduction to Functional Analysis. Clavendon Press, Oxford, 1997. | MR

[12] V. P.  Palamodov: The projective limit functor in the category of linear topological spaces. Mat. Sbornik 75 (1968), 567–603. (Russian) | MR | Zbl

[13] V. P. Palamodov: Homological methods in the theory of locally convex spaces. Uspekhi Mat. Nauk 26 (1971), 3–65. (Russian) | MR | Zbl

[14] P.  Pérez Carreras and J. Bonet: Barrelled Locally Convex Spaces. North-Holland Mathematics Studies, Vol. 131, 1987. | MR

[15] D.  Vogt: On the functors $\mathop {\mathrm Ext}^1(E,F)$ for Fréchet spaces. Studia Math. 85 (1987), 163–197. | DOI | MR

[16] D.  Vogt: Lectures on projective spectra of (DF)-spaces. Seminar lectures, AG Funktionalanalysis Düsseldorf/Wuppertal (1987).

[17] D.  Vogt: Topics on projective spectra of (LB)-spaces. In: Advances in the Theory of Fréchet Spaces, T.  Terzioǧlu (ed.), Kluwer, NATO ASF Ser. C, Vol. 287, Dordrecht, 1989, pp. 11–27. | MR | Zbl

[18] D.  Vogt: Regularity properties of (LF)-spaces. In: Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 57–84. | MR | Zbl

[19] J. Wengenroth: Acyclic inductive spectra of Fréchet spaces. Studia Math. 120 (1996), 247–258. | DOI | MR | Zbl

[20] J. Wengenroth: A new characterization of $\mathop {\mathrm Proj}^1 {\mathcal X}=0$ for countable spectra of (LB)-spaces. Proc. Amer. Math. Soc. 127 (1999), 737–744. | DOI | MR