On half cyclically ordered groups
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 275-294 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we introduce and investigate the notion of half cyclically ordered group generalizing the notion of half partially ordered group whose study was begun by Giraudet and Lucas.
In this paper we introduce and investigate the notion of half cyclically ordered group generalizing the notion of half partially ordered group whose study was begun by Giraudet and Lucas.
Classification : 06F15
Keywords: half partially ordered group; half cyclically ordered group; half $lc$-group; lexicographic product
@article{CMJ_2002_52_2_a3,
     author = {Jakub{\'\i}k, J\'an},
     title = {On half cyclically ordered groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {275--294},
     year = {2002},
     volume = {52},
     number = {2},
     mrnumber = {1905435},
     zbl = {1010.06013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a3/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On half cyclically ordered groups
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 275
EP  - 294
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a3/
LA  - en
ID  - CMJ_2002_52_2_a3
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On half cyclically ordered groups
%J Czechoslovak Mathematical Journal
%D 2002
%P 275-294
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a3/
%G en
%F CMJ_2002_52_2_a3
Jakubík, Ján. On half cyclically ordered groups. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 275-294. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a3/

[1] Š.  Černák: Lexicographic products of cyclically ordered groups. Math. Slovaca 45 (1995), 29–38. | MR

[2a] Š.  Černák: Cantor extension of a half lattice ordered group. Math. Slovaca 48 (1998), 221–231. | MR

[2b] Š.  Černák: On the maximal Dedekind completion of a half partially ordered group. Math. Slovaca 46 (1996), 379–390. | MR

[3] M.  Droste, M.  Giraudet and D.  Macpherson: Periodic ordered permutation groups and cyclic orderings. J.  Combin. Theory Ser. B, 63 (1995), 310–321. | DOI | MR

[4] L.  Fuchs: Partially Ordered Algebraic Systems. Addison-Wesley, Reading, 1963. | MR | Zbl

[5] M.  Giraudet and F.  Lucas: Groupes à moitié ordonnés. Fund. Math. 139 (1991), 75–89. | DOI | MR

[6] M.  Giraudet and J.  Rachůnek: Varieties of half lattice ordered groups of monotonic permutations in chains. Prepublication No  57, Université Paris  7, CNRS Logique (1996).

[7] J.  Jakubík: Lexicographic products of partially ordered groupoids. Czechoslovak Math. J. 14 (1964), 281–305. (Russian) | MR

[8] J.  Jakubík: On extended cyclic orders. Czechoslovak Math.  J. 44 (1994), 661–675. | MR

[9] J.  Jakubík: On half lattice ordered groups. Czechoslovak Math.  J. 46 (1996), 745–767. | MR

[10] J.  Jakubík: Lexicographic product decompositions of cyclically ordered groups. Czechoslovak Math.  J. 48 (1998), 229–241. | DOI | MR

[11] J.  Jakubík: Lexicographic products of half linearly ordered groups. Czechoslovak Math. J 51 (2001), 127–137. | DOI | MR

[12] J.  Jakubík and Š.  Černák: On convex linearly ordered subgroups of a $h\ell $-group. Math. Slovaca 50 (2000), 127–133. | MR

[13] A. I.  Maľcev: On ordered groups. Izv. Akad. Nauk SSSR, ser. mat. 13 (1949), 473–482. (Russian) | MR

[14] V.  Novák and M.  Novotný: Universal cyclically ordered sets. Czechoslovak Math.  J. 35 (1986), 158–161. | MR

[15] V.  Novák and M.  Novotný: On representations of cyclically ordered sets. Czechoslovak Math.  J. 39 (1989), 127–132.

[16] A.  Quilot: Cyclic orders. European J.  Combin. 10 (1989), 477–488. | DOI | MR

[17] L.  Rieger: On ordered and cyclically ordered groups I, II, III. Věstník král. čes. spol. nauk (1946), 1–31; (1947), 1–33; (1948), 1–26. (Czech) | MR

[18] S.  Swierczkowski: On cyclically ordered groups. Fund. Math. 47 (1959), 161–166. | DOI | MR | Zbl

[19] Dao Rong Ton: Torsion classes and torsion prime selectors of $h\ell $-groups. Math. Slovaca 50 (2000), 31–40. | MR