Keywords: half partially ordered group; half cyclically ordered group; half $lc$-group; lexicographic product
@article{CMJ_2002_52_2_a3,
author = {Jakub{\'\i}k, J\'an},
title = {On half cyclically ordered groups},
journal = {Czechoslovak Mathematical Journal},
pages = {275--294},
year = {2002},
volume = {52},
number = {2},
mrnumber = {1905435},
zbl = {1010.06013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a3/}
}
Jakubík, Ján. On half cyclically ordered groups. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 275-294. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a3/
[1] Š. Černák: Lexicographic products of cyclically ordered groups. Math. Slovaca 45 (1995), 29–38. | MR
[2a] Š. Černák: Cantor extension of a half lattice ordered group. Math. Slovaca 48 (1998), 221–231. | MR
[2b] Š. Černák: On the maximal Dedekind completion of a half partially ordered group. Math. Slovaca 46 (1996), 379–390. | MR
[3] M. Droste, M. Giraudet and D. Macpherson: Periodic ordered permutation groups and cyclic orderings. J. Combin. Theory Ser. B, 63 (1995), 310–321. | DOI | MR
[4] L. Fuchs: Partially Ordered Algebraic Systems. Addison-Wesley, Reading, 1963. | MR | Zbl
[5] M. Giraudet and F. Lucas: Groupes à moitié ordonnés. Fund. Math. 139 (1991), 75–89. | DOI | MR
[6] M. Giraudet and J. Rachůnek: Varieties of half lattice ordered groups of monotonic permutations in chains. Prepublication No 57, Université Paris 7, CNRS Logique (1996).
[7] J. Jakubík: Lexicographic products of partially ordered groupoids. Czechoslovak Math. J. 14 (1964), 281–305. (Russian) | MR
[8] J. Jakubík: On extended cyclic orders. Czechoslovak Math. J. 44 (1994), 661–675. | MR
[9] J. Jakubík: On half lattice ordered groups. Czechoslovak Math. J. 46 (1996), 745–767. | MR
[10] J. Jakubík: Lexicographic product decompositions of cyclically ordered groups. Czechoslovak Math. J. 48 (1998), 229–241. | DOI | MR
[11] J. Jakubík: Lexicographic products of half linearly ordered groups. Czechoslovak Math. J 51 (2001), 127–137. | DOI | MR
[12] J. Jakubík and Š. Černák: On convex linearly ordered subgroups of a $h\ell $-group. Math. Slovaca 50 (2000), 127–133. | MR
[13] A. I. Maľcev: On ordered groups. Izv. Akad. Nauk SSSR, ser. mat. 13 (1949), 473–482. (Russian) | MR
[14] V. Novák and M. Novotný: Universal cyclically ordered sets. Czechoslovak Math. J. 35 (1986), 158–161. | MR
[15] V. Novák and M. Novotný: On representations of cyclically ordered sets. Czechoslovak Math. J. 39 (1989), 127–132.
[16] A. Quilot: Cyclic orders. European J. Combin. 10 (1989), 477–488. | DOI | MR
[17] L. Rieger: On ordered and cyclically ordered groups I, II, III. Věstník král. čes. spol. nauk (1946), 1–31; (1947), 1–33; (1948), 1–26. (Czech) | MR
[18] S. Swierczkowski: On cyclically ordered groups. Fund. Math. 47 (1959), 161–166. | DOI | MR | Zbl
[19] Dao Rong Ton: Torsion classes and torsion prime selectors of $h\ell $-groups. Math. Slovaca 50 (2000), 31–40. | MR