The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 429-437 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove two versions of the Monotone Convergence Theorem for the vector integral of Kurzweil, $\int _R{\mathrm d}\alpha (t) f(t)$, where $R$ is a compact interval of $\mathbb{R}^n$, $\alpha $ and $f$ are functions with values on $L(Z,W)$ and $Z$ respectively, and $Z$ and $W$ are monotone ordered normed spaces. Analogous results can be obtained for the Kurzweil vector integral, $\int _R\alpha (t)\mathrm{d}f(t)$, as well as to unbounded intervals $R$.
We prove two versions of the Monotone Convergence Theorem for the vector integral of Kurzweil, $\int _R{\mathrm d}\alpha (t) f(t)$, where $R$ is a compact interval of $\mathbb{R}^n$, $\alpha $ and $f$ are functions with values on $L(Z,W)$ and $Z$ respectively, and $Z$ and $W$ are monotone ordered normed spaces. Analogous results can be obtained for the Kurzweil vector integral, $\int _R\alpha (t)\mathrm{d}f(t)$, as well as to unbounded intervals $R$.
Classification : 26A39, 26A42, 28B05
Keywords: Monotone Convergence Theorem; Kurzweil vector integral; ordered normed spaces
@article{CMJ_2002_52_2_a17,
     author = {Federson, M\'arcia},
     title = {The monotone convergence theorem for multidimensional abstract {Kurzweil} vector integrals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {429--437},
     year = {2002},
     volume = {52},
     number = {2},
     mrnumber = {1905449},
     zbl = {1022.28003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a17/}
}
TY  - JOUR
AU  - Federson, Márcia
TI  - The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 429
EP  - 437
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a17/
LA  - en
ID  - CMJ_2002_52_2_a17
ER  - 
%0 Journal Article
%A Federson, Márcia
%T The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals
%J Czechoslovak Mathematical Journal
%D 2002
%P 429-437
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a17/
%G en
%F CMJ_2002_52_2_a17
Federson, Márcia. The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 429-437. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a17/

[1] G. Birkhoff: Integration of functions on Banach spaces. Trans. Amer. Math. Soc. 38 (1935), 357–378. | MR

[2] M. M.  Day: Normed Linear Spaces. Springer-Verlag, 1973. | MR | Zbl

[3] M.  Federson: The Fundamental Theorem of Calculus for the multidimensional Banach space-valued Henstock vector integral. Real Anal. Exchange 25 (2000), 469–480. | MR

[4] R.  Henstock: A Riemann-type integral of Lebesgue power. Canad. J.  Math. 20 (1968), 79–87. | DOI | MR | Zbl

[5] C. S. Hönig: On a remarkable differential characterization of the functions that are Kurzweil-Henstock integrals. Seminário Brasileiro de Análise 33 (1991), 331–341.

[6] G. J. Murphy: $C^{*}$-Algebras and Operator Theory. Academic Press, 1990. | MR | Zbl

[7] Š.  Schwabik: Abstract Perron-Stieltjes integral. Math. Bohem. 121 (1996), 425–447. | MR | Zbl