Keywords: Monotone Convergence Theorem; Kurzweil vector integral; ordered normed spaces
@article{CMJ_2002_52_2_a17,
author = {Federson, M\'arcia},
title = {The monotone convergence theorem for multidimensional abstract {Kurzweil} vector integrals},
journal = {Czechoslovak Mathematical Journal},
pages = {429--437},
year = {2002},
volume = {52},
number = {2},
mrnumber = {1905449},
zbl = {1022.28003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a17/}
}
Federson, Márcia. The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 429-437. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a17/
[1] G. Birkhoff: Integration of functions on Banach spaces. Trans. Amer. Math. Soc. 38 (1935), 357–378. | MR
[2] M. M. Day: Normed Linear Spaces. Springer-Verlag, 1973. | MR | Zbl
[3] M. Federson: The Fundamental Theorem of Calculus for the multidimensional Banach space-valued Henstock vector integral. Real Anal. Exchange 25 (2000), 469–480. | MR
[4] R. Henstock: A Riemann-type integral of Lebesgue power. Canad. J. Math. 20 (1968), 79–87. | DOI | MR | Zbl
[5] C. S. Hönig: On a remarkable differential characterization of the functions that are Kurzweil-Henstock integrals. Seminário Brasileiro de Análise 33 (1991), 331–341.
[6] G. J. Murphy: $C^{*}$-Algebras and Operator Theory. Academic Press, 1990. | MR | Zbl
[7] Š. Schwabik: Abstract Perron-Stieltjes integral. Math. Bohem. 121 (1996), 425–447. | MR | Zbl