Commutativity of rings with polynomial constraints
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 401-413 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $p$, $ q$ and $r$ be fixed non-negative integers. In this note, it is shown that if $R$ is left (right) $s$-unital ring satisfying $[f(x^py^q) - x^ry, x] = 0$ ($[f(x^py^q) - yx^r, x] = 0$, respectively) where $f(\lambda ) \in {\lambda }^2{\mathbb Z}[\lambda ]$, then $R$ is commutative. Moreover, commutativity of $R$ is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results.
Let $p$, $ q$ and $r$ be fixed non-negative integers. In this note, it is shown that if $R$ is left (right) $s$-unital ring satisfying $[f(x^py^q) - x^ry, x] = 0$ ($[f(x^py^q) - yx^r, x] = 0$, respectively) where $f(\lambda ) \in {\lambda }^2{\mathbb Z}[\lambda ]$, then $R$ is commutative. Moreover, commutativity of $R$ is also obtained under different sets of constraints on integral exponents. Also, we provide some counterexamples which show that the hypotheses are not altogether superfluous. Thus, many well-known commutativity theorems become corollaries of our results.
Classification : 16R50, 16U70, 16U80, 16U99
Keywords: automorphism; commutativity; local ring; polynomial identity; $s$-unital ring
@article{CMJ_2002_52_2_a15,
     author = {Khan, Moharram A.},
     title = {Commutativity of rings with polynomial constraints},
     journal = {Czechoslovak Mathematical Journal},
     pages = {401--413},
     year = {2002},
     volume = {52},
     number = {2},
     mrnumber = {1905447},
     zbl = {1014.16032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a15/}
}
TY  - JOUR
AU  - Khan, Moharram A.
TI  - Commutativity of rings with polynomial constraints
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 401
EP  - 413
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a15/
LA  - en
ID  - CMJ_2002_52_2_a15
ER  - 
%0 Journal Article
%A Khan, Moharram A.
%T Commutativity of rings with polynomial constraints
%J Czechoslovak Mathematical Journal
%D 2002
%P 401-413
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a15/
%G en
%F CMJ_2002_52_2_a15
Khan, Moharram A. Commutativity of rings with polynomial constraints. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 401-413. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a15/

[1] H. A. S. Abujabal and M. A. Khan: Commutativity for a certain class of rings. Georgian Math.  J. 5 (1998), 301–314. | DOI | MR

[2] H. A. S.  Abujabal, M. A. Khan and M. S.  Khan: A commutativity theorem for one sided $s$-unital rings. Pure Math. Appl. 1 (1990), 109–116. | MR

[3] H. E. Bell, M. A. Quadri and M. A. Khan: Two commutativity theorems for rings. Rad. Mat. 3 (1987), 255–260. | MR

[4] H. E. Bell: On the power map and ring commutativity. Canad. Math. Bull. 21 (1978), 399–404. | DOI | MR | Zbl

[5] H. E.  Bell: On some commutativity theorems of Herstein. Arch. Math. 24 (1973), 34-38. | DOI | MR | Zbl

[6] I. N.  Herstein: Power maps in rings. Michigan Math.  J. 8 (1961), 29–32. | DOI | MR | Zbl

[7] I. N.  Herstein: Two remarks on commutativity of rings. Canad. J.  Math. 7 (1955), 411–412. | DOI | MR

[8] Y. Hirano, Y.  Kobayashi and H. Tominaga: Some polynomial identities and commutativity of $s$-unital rings. Math. J.  Okayama Univ. 24 (1982), 7–13. | MR

[9] N. Jacobson: Structure of Rings. Amer. Math. Soc. Colloq. Publ., Providence, 1956. | MR | Zbl

[10] T. P. Kezlan: A note on commutativity of semiprime PI-rings. Math. Japon. 27 (1982), 267–268. | MR | Zbl

[11] M. A.  Khan: Commutativity of rings through a Streb’s result. Czecholoslovak Math. J. 50 (2000), 791–801. | DOI | MR | Zbl

[12] H. Komatsu, T. Nishinaka and H. Tominaga: On commutativity of rings. Rad. Mat. 6 (1990), 303–311. | MR

[13] H. Komatsu and H. Tominaga: Chacron’s condition and commutativity theorems. Math. J. Okayama Univ. 31 (1989), 101–120. | MR

[14] H. Komatsu: Some commutativity theorems for left $s$-unital rings. Resultate der Math. 15 (1989), 335–342. | DOI | MR | Zbl

[15] W. K. Nicholson and A. Yaqub: A commutativity theorem for rings and groups. Canad. Math. Bull. 22 (1979), 419–423. | DOI | MR

[16] E. Psomopoulos: A commutativity theorem for rings. Math. Japon. 29 (1984), 371–373. | MR | Zbl

[17] M. S. Puctha and A. Yaqub: Rings satisfying polynomial constraints. J. Math. Soc. Japan 25 (1973), 115–124. | MR

[18] W.  Streb: Zur Struktur nichtkommutativer Ringe. Math. J.  Okayama Univ. 31 (1989), 135–140. | MR | Zbl

[19] W. Streb: Über einen Satz von Herstein und Nakayama. Rend. Sem. Mat. Univ. Podova 64 (1981), 151–171. | MR | Zbl