Keywords: Liapunov-type inequality; oscillatory solution; third order delay-differential equation
@article{CMJ_2002_52_2_a14,
author = {Parhi, N. and Panigrahi, S.},
title = {Liapunov-type inequality for delay-differential equations of third order},
journal = {Czechoslovak Mathematical Journal},
pages = {385--399},
year = {2002},
volume = {52},
number = {2},
mrnumber = {1905446},
zbl = {1023.34069},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a14/}
}
Parhi, N.; Panigrahi, S. Liapunov-type inequality for delay-differential equations of third order. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 385-399. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a14/
[1] R. S. Dahiya and B. Singh: A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equation. J. Math. Phys. Sci. 7 (1973), 163–170. | MR
[2] S. B. Eliason: A Liapunov inequality for a certain second order nonlinear differential equation. J. London Math. Soc. 2 (1970), 461–466. | DOI | MR
[3] S. B. Eliason: Liapunov-type inequalities for certain second order functional differential equations. SIAM J. Appl. Math. 27 (1974), 180–199. | DOI | MR
[4] S. B. Eliason: Distance between zeros of certain differential equations having delayed arguments. Ann. Mat. Pura Appl. 106 (1975), 273–291. | DOI | MR | Zbl
[5] P. Hartman: Ordinary Differential Equations. Wiley, New York, 1964. | MR | Zbl
[6] B. G. Pachpatte: On Liapunov-type inequalities for certain higher order differential equations. J. Math. Anal. Appl. 195 (1995), 527–536. | DOI | MR
[7] N. Parhi and S. Panigrahi: On Liapunov-type inequality for third order differential equations. J. Math. Anal. Appl. 233 (1999), 445–460. | DOI | MR
[8] W. T. Patula: On the distance between zeros. Proc. Amer. Math. Soc. 52 (1975), 247–251. | DOI | MR