Liapunov-type inequality for delay-differential equations of third order
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 385-399 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A Liapunov-type inequality for a class of third order delay-differential equations is derived.
A Liapunov-type inequality for a class of third order delay-differential equations is derived.
Classification : 34C10, 34K11, 34K20
Keywords: Liapunov-type inequality; oscillatory solution; third order delay-differential equation
@article{CMJ_2002_52_2_a14,
     author = {Parhi, N. and Panigrahi, S.},
     title = {Liapunov-type inequality for delay-differential equations of third order},
     journal = {Czechoslovak Mathematical Journal},
     pages = {385--399},
     year = {2002},
     volume = {52},
     number = {2},
     mrnumber = {1905446},
     zbl = {1023.34069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a14/}
}
TY  - JOUR
AU  - Parhi, N.
AU  - Panigrahi, S.
TI  - Liapunov-type inequality for delay-differential equations of third order
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 385
EP  - 399
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a14/
LA  - en
ID  - CMJ_2002_52_2_a14
ER  - 
%0 Journal Article
%A Parhi, N.
%A Panigrahi, S.
%T Liapunov-type inequality for delay-differential equations of third order
%J Czechoslovak Mathematical Journal
%D 2002
%P 385-399
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a14/
%G en
%F CMJ_2002_52_2_a14
Parhi, N.; Panigrahi, S. Liapunov-type inequality for delay-differential equations of third order. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 385-399. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a14/

[1] R. S. Dahiya and B. Singh: A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equation. J. Math. Phys. Sci. 7 (1973), 163–170. | MR

[2] S. B. Eliason: A Liapunov inequality for a certain second order nonlinear differential equation. J. London Math. Soc. 2 (1970), 461–466. | DOI | MR

[3] S. B. Eliason: Liapunov-type inequalities for certain second order functional differential equations. SIAM J. Appl. Math. 27 (1974), 180–199. | DOI | MR

[4] S. B. Eliason: Distance between zeros of certain differential equations having delayed arguments. Ann. Mat. Pura Appl. 106 (1975), 273–291. | DOI | MR | Zbl

[5] P. Hartman: Ordinary Differential Equations. Wiley, New York, 1964. | MR | Zbl

[6] B. G. Pachpatte: On Liapunov-type inequalities for certain higher order differential equations. J. Math. Anal. Appl. 195 (1995), 527–536. | DOI | MR

[7] N. Parhi and S. Panigrahi: On Liapunov-type inequality for third order differential equations. J. Math. Anal. Appl. 233 (1999), 445–460. | DOI | MR

[8] W. T. Patula: On the distance between zeros. Proc. Amer. Math. Soc. 52 (1975), 247–251. | DOI | MR