Almost periodic compactifications of group extensions
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 237-254 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $N$ and $K$ be groups and let $G$ be an extension of $N$ by $K$. Given a property $\mathcal P$ of group compactifications, one can ask whether there exist compactifications $N^{\prime }$ and $K^{\prime }$ of $N$ and $K$ such that the universal $\mathcal P$-compactification of $G$ is canonically isomorphic to an extension of $N^{\prime }$ by $K^{\prime }$. We prove a theorem which gives necessary and sufficient conditions for this to occur for general properties $\mathcal P$ and then apply this result to the almost periodic and weakly almost periodic compactifications of $G$.
Let $N$ and $K$ be groups and let $G$ be an extension of $N$ by $K$. Given a property $\mathcal P$ of group compactifications, one can ask whether there exist compactifications $N^{\prime }$ and $K^{\prime }$ of $N$ and $K$ such that the universal $\mathcal P$-compactification of $G$ is canonically isomorphic to an extension of $N^{\prime }$ by $K^{\prime }$. We prove a theorem which gives necessary and sufficient conditions for this to occur for general properties $\mathcal P$ and then apply this result to the almost periodic and weakly almost periodic compactifications of $G$.
Classification : 22A20, 22D05, 43A60
Keywords: group extension; semidirect product; topological group; semitopological semigroup; right topological semigroup; compactification; almost periodic; weakly almost periodic; strongly almost periodic
@article{CMJ_2002_52_2_a1,
     author = {Junghenn, H. D. and Milnes, P.},
     title = {Almost periodic compactifications of group extensions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {237--254},
     year = {2002},
     volume = {52},
     number = {2},
     mrnumber = {1905433},
     zbl = {1011.22001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a1/}
}
TY  - JOUR
AU  - Junghenn, H. D.
AU  - Milnes, P.
TI  - Almost periodic compactifications of group extensions
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 237
EP  - 254
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a1/
LA  - en
ID  - CMJ_2002_52_2_a1
ER  - 
%0 Journal Article
%A Junghenn, H. D.
%A Milnes, P.
%T Almost periodic compactifications of group extensions
%J Czechoslovak Mathematical Journal
%D 2002
%P 237-254
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a1/
%G en
%F CMJ_2002_52_2_a1
Junghenn, H. D.; Milnes, P. Almost periodic compactifications of group extensions. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 237-254. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a1/

[1] J. F.  Berglund, H. D.  Junghenn and P.  Milnes: Analysis on Semigroups: Function Spaces, Compactifications, Representations. Wiley, New York, 1989. | MR

[2] K.  de  Leeuw and I.  Glicksberg: Almost periodic functions on semigroups. Acta Math. 105 (1961), 99–140. | DOI | MR

[3] H. D.  Junghenn and B.  Lerner: Semigroup compactifications of semidirect products. Trans. Amer. Math. Soc. 265 (1981), 393–404. | DOI | MR

[4] H. D.  Junghenn and P.  Milnes: Distal compactifications of group extensions. Rocky Mountain Math.  J. 29 (1999), 209–227. | DOI | MR

[5] M.  Landstad: On the Bohr compactification of a transformation group. Math.  Z. 127 (1972), 167–178. | DOI | MR | Zbl

[6] A. T.  Lau, P.  Milnes and J. S.  Pym: Compactifications of locally compact groups and quotients. Math. Proc. Camb. Phil. Soc. 116 (1994), 451–463. | DOI | MR

[7] P.  Milnes: Almost periodic compactifications of direct and semidirect products. Coll. Math. 44 (1981), 125–136. | DOI | MR | Zbl

[8] M.  Rieffel: $C^{\star }$-algebras associated with irrational rotation algebras. Pacific J.  Math. 93 (1981), 415–429. | DOI | MR | Zbl

[9] O.  Schreier: Über die Erweiterung von Gruppen I. Monatsh. Math. Phys. 34 (1926), 165–180. | DOI | MR

[10] W.  R.  Scott: Group Theory. Prentice Hall, Englewood Cliffs, N.  J., 1964. | MR | Zbl