Extremal metrics and modulus
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 225-235
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We give a new proof of Beurling’s result related to the equality of the extremal length and the Dirichlet integral of solution of a mixed Dirichlet-Neuman problem. Our approach is influenced by Gehring’s work in $\mathbb{R}^3$ space. Also, some generalizations of Gehring’s result are presented.
We give a new proof of Beurling’s result related to the equality of the extremal length and the Dirichlet integral of solution of a mixed Dirichlet-Neuman problem. Our approach is influenced by Gehring’s work in $\mathbb{R}^3$ space. Also, some generalizations of Gehring’s result are presented.
Classification :
30A15, 30C85
Keywords: extremal distance; conformal capacity; Beurling theorem
Keywords: extremal distance; conformal capacity; Beurling theorem
@article{CMJ_2002_52_2_a0,
author = {Ani\'c, I. and Mateljevi\'c, M. and \v{S}ari\'c, D.},
title = {Extremal metrics and modulus},
journal = {Czechoslovak Mathematical Journal},
pages = {225--235},
year = {2002},
volume = {52},
number = {2},
mrnumber = {1905432},
zbl = {1014.30015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a0/}
}
Anić, I.; Mateljević, M.; Šarić, D. Extremal metrics and modulus. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 225-235. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a0/