Keywords: extremal distance; conformal capacity; Beurling theorem
@article{CMJ_2002_52_2_a0,
author = {Ani\'c, I. and Mateljevi\'c, M. and \v{S}ari\'c, D.},
title = {Extremal metrics and modulus},
journal = {Czechoslovak Mathematical Journal},
pages = {225--235},
year = {2002},
volume = {52},
number = {2},
mrnumber = {1905432},
zbl = {1014.30015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a0/}
}
Anić, I.; Mateljević, M.; Šarić, D. Extremal metrics and modulus. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 225-235. http://geodesic.mathdoc.fr/item/CMJ_2002_52_2_a0/
[ahl] L. V. Ahlfors: Conformal Invariants. McGraw-Hill Book Company, 1973. | MR | Zbl
[geh1] F. W. Gehring: Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103 (1962), 383–393. | DOI | MR | Zbl
[geh3] F. W. Gehring: Quasiconformal mappings in space. Bull. Amer. Math. Soc. 69 (1963). | DOI | MR | Zbl
[zie] W. P. Ziemer: Extremal lenght and $p$-capacity. Michigan Math. J. 16 (1969), 43–51. | DOI | MR
[streb] K. Strebel: Quadratic Differentials. Springer-Verlag, 1984. | MR | Zbl
[cour] R. Courant: Dirichlet’s Principle, Conformal Mappings and Minimal Surfaces. New York, Interscience Publishers, Inc., 1950. | MR
[gar] F. P. Gardiner: Teichmüller Theory and Quadratic Differentials. New York, A Wiley-Interscience Publication, 1987. | MR | Zbl
[tub] M. Berger, B. Gostiaux: Differential Geometry: Manifolds, Curves and Surfaces. Springer-Verlag, 1987. | MR
[vai] J.Väisälä: On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. A 298 (1961), 1–36. | MR | Zbl
[low] C. Loewner: On the conformal capacity in space. J. Math. Mech. 8 (1959), 411–414. | MR | Zbl