A Borel extension approach to weakly compact operators on $C_0(T)$
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 97-115 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a quasicomplete locally convex Hausdorff space. Let $T$ be a locally compact Hausdorff space and let $C_0(T) = \lbrace f\: T \rightarrow I$, $f$ is continuous and vanishes at infinity$\rbrace $ be endowed with the supremum norm. Starting with the Borel extension theorem for $X$-valued $\sigma $-additive Baire measures on $T$, an alternative proof is given to obtain all the characterizations given in [13] for a continuous linear map $u\: C_0(T) \rightarrow X$ to be weakly compact.
Let $X$ be a quasicomplete locally convex Hausdorff space. Let $T$ be a locally compact Hausdorff space and let $C_0(T) = \lbrace f\: T \rightarrow I$, $f$ is continuous and vanishes at infinity$\rbrace $ be endowed with the supremum norm. Starting with the Borel extension theorem for $X$-valued $\sigma $-additive Baire measures on $T$, an alternative proof is given to obtain all the characterizations given in [13] for a continuous linear map $u\: C_0(T) \rightarrow X$ to be weakly compact.
Classification : 28B05, 46G10, 47B07, 47B38
@article{CMJ_2002_52_1_a9,
     author = {Panchapagesan, T. V.},
     title = {A {Borel} extension approach to weakly compact operators on $C_0(T)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {97--115},
     year = {2002},
     volume = {52},
     number = {1},
     mrnumber = {1885460},
     zbl = {0996.47041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a9/}
}
TY  - JOUR
AU  - Panchapagesan, T. V.
TI  - A Borel extension approach to weakly compact operators on $C_0(T)$
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 97
EP  - 115
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a9/
LA  - en
ID  - CMJ_2002_52_1_a9
ER  - 
%0 Journal Article
%A Panchapagesan, T. V.
%T A Borel extension approach to weakly compact operators on $C_0(T)$
%J Czechoslovak Mathematical Journal
%D 2002
%P 97-115
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a9/
%G en
%F CMJ_2002_52_1_a9
Panchapagesan, T. V. A Borel extension approach to weakly compact operators on $C_0(T)$. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 97-115. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a9/

[1] J.  Diestel and J. J.  Uhl: Vector Measures. Survey No.15, Amer. Math. Soc., Providence, RI., 1977. | MR

[2] N.  Dinculeanu: Vector Measures. Pergamon Press, New York, 1967. | MR

[3] N.  Dinculeanu and I.  Kluvánek: On vector measures. Proc. London Math. Soc. 17 (1967), 505–512. | MR

[4] I.  Dobrakov and T. V.  Panchapagesan: A simple proof of the Borel extension theorem and weak compactness of operators. (to appear). | MR

[5] R. E. Edwards: Functional Analysis, Theory and Applications. Holt, Rinehart and Winston, New York, 1965. | MR | Zbl

[6] A.  Grothendieck: Sur les applications lineares faiblement compactes d’espaces du type C(K). Canad. J.  Math. 5 (1953), 129–173. | DOI | MR

[7] P. R.  Halmos: Measure Theory. Van Nostrand, New York, 1950. | MR | Zbl

[8] I.  Kluvánek: Characterizations of Fourier-Stieltjes transform of vector and operator valued measures. Czechoslovak Math.  J. 17 (1967), 261–277. | MR

[9] T. V.  Panchapagesan: On complex Radon measures I. Czechoslovak Math.  J. 42 (1992), 599–612. | MR | Zbl

[10] T. V.  Panchapagesan: On complex Radon measures II. Czechoslovak Math.  J. 43 (1993), 65–82. | MR | Zbl

[11] T. V.  Panchapagesan: Applications of a theorem of Grothendieck to vector measures. J.  Math. Anal. Appl. 214 (1997), 89–101. | DOI | MR

[12] T. V.  Panchapagesan: Baire and $\sigma $-Borel characterizations of weakly compact sets in $M(T)$. Trans. Amer. Math. Soc. (1998), 4539–4547. | MR | Zbl

[13] T. V.  Panchapagesan: Characterizations of weakly compact operators on $C_0(T)$. Trans. Amer. Math. Soc. (1998), 4549–4567. | Zbl

[14] T. V.  Panchapagesan: On the limitations of the Grothendieck techniques. (to appear). | MR

[15] M.  Sion: Outer measures with values in a topological group. Proc. London Math. Soc. 19 (1969), 89–106. | DOI | MR | Zbl

[16] E.  Thomas: L’integration par rapport a une mesure de Radon vectoriele. Ann. Inst. Fourier (Grenoble) 20 (1970), 55–191. | DOI | MR