Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 87-95
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In the present paper, using a Picard type method of approximation, we investigate the global existence of mild solutions for a class of Ito type stochastic differential equations whose coefficients satisfy conditions more general than the Lipschitz and linear growth ones.
In the present paper, using a Picard type method of approximation, we investigate the global existence of mild solutions for a class of Ito type stochastic differential equations whose coefficients satisfy conditions more general than the Lipschitz and linear growth ones.
@article{CMJ_2002_52_1_a8,
author = {Barbu, Dorel and Boc\c{s}an, Gheorghe},
title = {Approximations to mild solutions of stochastic semilinear equations with {non-Lipschitz} coefficients},
journal = {Czechoslovak Mathematical Journal},
pages = {87--95},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885459},
zbl = {1001.60068},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/}
}
TY - JOUR AU - Barbu, Dorel AU - Bocşan, Gheorghe TI - Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients JO - Czechoslovak Mathematical Journal PY - 2002 SP - 87 EP - 95 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/ LA - en ID - CMJ_2002_52_1_a8 ER -
%0 Journal Article %A Barbu, Dorel %A Bocşan, Gheorghe %T Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients %J Czechoslovak Mathematical Journal %D 2002 %P 87-95 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/ %G en %F CMJ_2002_52_1_a8
Barbu, Dorel; Bocşan, Gheorghe. Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 87-95. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/