@article{CMJ_2002_52_1_a8,
author = {Barbu, Dorel and Boc\c{s}an, Gheorghe},
title = {Approximations to mild solutions of stochastic semilinear equations with {non-Lipschitz} coefficients},
journal = {Czechoslovak Mathematical Journal},
pages = {87--95},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885459},
zbl = {1001.60068},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/}
}
TY - JOUR AU - Barbu, Dorel AU - Bocşan, Gheorghe TI - Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients JO - Czechoslovak Mathematical Journal PY - 2002 SP - 87 EP - 95 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/ LA - en ID - CMJ_2002_52_1_a8 ER -
%0 Journal Article %A Barbu, Dorel %A Bocşan, Gheorghe %T Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients %J Czechoslovak Mathematical Journal %D 2002 %P 87-95 %V 52 %N 1 %U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/ %G en %F CMJ_2002_52_1_a8
Barbu, Dorel; Bocşan, Gheorghe. Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 87-95. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/
[1] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii: Measures of Noncompactness and Condensing Operators. Birkhauser-Verlag, Basel-Boston-Berlin, 1992. | MR
[2] V. Bally, I. Gyöngy and E. Pardoux: White noise driven parabolic SPDEs with measurable drift. J. Funct. Anal. 120 (1994), 484–510. | DOI | MR
[3] D. Barbu: Local and global existence for mild solutions of stochastic differential equations. Portugal. Math. 55 (1998), 411–424. | MR | Zbl
[4] G. Da Prato and J. Zabczyk: A note on stochastic convolution. Stochastic Anal. Appl. 10 (1992), 143–153. | DOI | MR
[5] G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. | MR
[6] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems. Cambridge Univ. Press, Cambridge, 1996. | MR
[7] M. Eddabhi and M. Erraoui: On quasi-linear parabolic SPDEs with non-Lipschitz coefficients. Random Oper. and Stochastic Equations 6 (1998), 105–126. | MR
[8] A. Ichikawa: Stability of semilinear stochastic evolution equation. J. Math. Anal. Appl. 90 (1982), 12–44. | DOI | MR
[9] R. Manthey: Convergence of successive approximation for parabolic partial differential equations with additive white noise. Serdica 16 (1990), 194–200. | MR | Zbl
[10] R. Manthey and T. Zausinger: Stochastic evolution equations in $L_{\rho }^{2\nu }$. Stochastics Stochastics Rep. 66 (1999), 37–85. | DOI | MR
[11] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York, 1983. | MR | Zbl
[12] J. Seidler: Da Prato-Zabczyk’s maximal inequality revisited I. Math. Bohem. 118 (1993), 67–106. | MR | Zbl
[13] T. Taniguchi: On the estimate of solutions of perturbed linear differential equations. J. Math. Anal. Appl. 153 (1990), 288–300. | DOI | MR | Zbl
[14] T. Taniguchi: Successive Approximations to Solutions of Stochastic Differential Equations. J. Differential Equations 96 (1992), 152–169. | DOI | MR | Zbl
[15] L. Tubaro: An estimate of Burkholder type for stochastic processes defined by the stochastic integral. Stochastic Anal. Appl. 2 (1984), 187–192. | DOI | MR | Zbl
[16] T. Yamada: On the successive approximation of solutions of stochastic differential equations. J. Math. Sci. Univ. Kyoto 21 (1981), 501–515. | DOI | MR | Zbl