Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 87-95 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper, using a Picard type method of approximation, we investigate the global existence of mild solutions for a class of Ito type stochastic differential equations whose coefficients satisfy conditions more general than the Lipschitz and linear growth ones.
In the present paper, using a Picard type method of approximation, we investigate the global existence of mild solutions for a class of Ito type stochastic differential equations whose coefficients satisfy conditions more general than the Lipschitz and linear growth ones.
Classification : 34F05, 34G20, 35R60, 60H15
Keywords: mild solution; Picard approximations
@article{CMJ_2002_52_1_a8,
     author = {Barbu, Dorel and Boc\c{s}an, Gheorghe},
     title = {Approximations to mild solutions of stochastic semilinear equations with {non-Lipschitz} coefficients},
     journal = {Czechoslovak Mathematical Journal},
     pages = {87--95},
     year = {2002},
     volume = {52},
     number = {1},
     mrnumber = {1885459},
     zbl = {1001.60068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/}
}
TY  - JOUR
AU  - Barbu, Dorel
AU  - Bocşan, Gheorghe
TI  - Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 87
EP  - 95
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/
LA  - en
ID  - CMJ_2002_52_1_a8
ER  - 
%0 Journal Article
%A Barbu, Dorel
%A Bocşan, Gheorghe
%T Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients
%J Czechoslovak Mathematical Journal
%D 2002
%P 87-95
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/
%G en
%F CMJ_2002_52_1_a8
Barbu, Dorel; Bocşan, Gheorghe. Approximations to mild solutions of stochastic semilinear equations with non-Lipschitz coefficients. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 87-95. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a8/

[1] R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii: Measures of Noncompactness and Condensing Operators. Birkhauser-Verlag, Basel-Boston-Berlin, 1992. | MR

[2] V. Bally, I.  Gyöngy and E.  Pardoux: White noise driven parabolic SPDEs with measurable drift. J.  Funct. Anal. 120 (1994), 484–510. | DOI | MR

[3] D. Barbu: Local and global existence for mild solutions of stochastic differential equations. Portugal. Math. 55 (1998), 411–424. | MR | Zbl

[4] G.  Da Prato and J. Zabczyk: A note on stochastic convolution. Stochastic Anal. Appl. 10 (1992), 143–153. | DOI | MR

[5] G.  Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. | MR

[6] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems. Cambridge Univ. Press, Cambridge, 1996. | MR

[7] M. Eddabhi and M.  Erraoui: On quasi-linear parabolic SPDEs with non-Lipschitz coefficients. Random Oper. and Stochastic Equations 6 (1998), 105–126. | MR

[8] A. Ichikawa: Stability of semilinear stochastic evolution equation. J.  Math. Anal. Appl. 90 (1982), 12–44. | DOI | MR

[9] R. Manthey: Convergence of successive approximation for parabolic partial differential equations with additive white noise. Serdica 16 (1990), 194–200. | MR | Zbl

[10] R.  Manthey and T.  Zausinger: Stochastic evolution equations in $L_{\rho }^{2\nu }$. Stochastics Stochastics Rep. 66 (1999), 37–85. | DOI | MR

[11] A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York, 1983. | MR | Zbl

[12] J.  Seidler: Da Prato-Zabczyk’s maximal inequality revisited I. Math. Bohem. 118 (1993), 67–106. | MR | Zbl

[13] T.  Taniguchi: On the estimate of solutions of perturbed linear differential equations. J.  Math. Anal. Appl. 153 (1990), 288–300. | DOI | MR | Zbl

[14] T. Taniguchi: Successive Approximations to Solutions of Stochastic Differential Equations. J.  Differential Equations 96 (1992), 152–169. | DOI | MR | Zbl

[15] L.  Tubaro: An estimate of Burkholder type for stochastic processes defined by the stochastic integral. Stochastic Anal. Appl. 2 (1984), 187–192. | DOI | MR | Zbl

[16] T.  Yamada: On the successive approximation of solutions of stochastic differential equations. J.  Math. Sci. Univ. Kyoto 21 (1981), 501–515. | DOI | MR | Zbl