Keywords: monoid; ideal; cancellative; torsion free
@article{CMJ_2002_52_1_a7,
author = {Rosales, J. C. and Garc{\'\i}a-Garc{\'\i}a, J. I.},
title = {Principal ideals of finitely generated commutative monoids},
journal = {Czechoslovak Mathematical Journal},
pages = {75--85},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885458},
zbl = {1003.20052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a7/}
}
Rosales, J. C.; García-García, J. I. Principal ideals of finitely generated commutative monoids. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a7/
[1] T. Becker and W. Weispfenning: Gröbner Bases: a Computational Approach to Commutative Algebra. Springer-Verlag, New York, 1993. | MR
[2] A. H. Clifford: The Algebraic Theory of Semigroups. Amer. Math. Soc., Providence, 1961. | Zbl
[3] D. Eisenbud and B. Sturmfels: Binomial ideals. Duke Math. J. 84 (1996), 1–45. | DOI | MR
[4] R. Gilmer: Commutative Semigroup Rings. University of Chicago Press, Chicago, 1984. | MR | Zbl
[5] J. Herzog: Generators and relations of abelian semigroup and semigroups rings. Manuscripta Math. 3 (1970), 175–193. | DOI | MR
[6] G. B. Preston: Rédei’s characterization of congruences of finitely generated free commutative semigroups. Acta Math. Acad. Sci. Hungar. 26 (1975), 337–342. | DOI | MR
[7] L. Rédei: The theory of finitely commutative semigroups. Pergamon, Oxford-Edinburgh-New York, 1965. | MR
[8] J. C. Rosales and P. A. García-Sánchez: Finitely generated commutative monoids. vol. xiv, Nova Science Publishers, New York, 1999. | MR
[9] J. C. Rosales and J. M. Urbano-Blanco: A deterministic algorithm to decide if a finitely presented monoid is cancellative. Comm. Algebra 24 (1996), 4217–4224. | DOI | MR
[10] J. C. Rosales: On finitely generated submonoids of $N^k$. Semigroup Forum 50 (1995), 251–262. | DOI | MR
[11] J. C. Rosales and P. A. García-Sánchez: Presentations for subsemigroups of finitely generated commutative semigroups. Israel J. Math. 113 (1999), 269–283. | DOI | MR