Two extension theorems. Modular functions on complemented lattices
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 55-74 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove an extension theorem for modular functions on arbitrary lattices and an extension theorem for measures on orthomodular lattices. The first is used to obtain a representation of modular vector-valued functions defined on complemented lattices by measures on Boolean algebras. With the aid of this representation theorem we transfer control measure theorems, Vitali-Hahn-Saks and Nikodým theorems and the Liapunoff theorem about the range of measures to the setting of modular functions on complemented lattices.
We prove an extension theorem for modular functions on arbitrary lattices and an extension theorem for measures on orthomodular lattices. The first is used to obtain a representation of modular vector-valued functions defined on complemented lattices by measures on Boolean algebras. With the aid of this representation theorem we transfer control measure theorems, Vitali-Hahn-Saks and Nikodým theorems and the Liapunoff theorem about the range of measures to the setting of modular functions on complemented lattices.
Classification : 06B30, 06C15, 28E99
Keywords: complemented lattices; orthomodular lattices; exhaustive modular functions; measures; extension; Vitali-Hahn-Saks theorem; Nikodým theorems; Liapunoff theorem
@article{CMJ_2002_52_1_a6,
     author = {Weber, Hans},
     title = {Two extension theorems. {Modular} functions on complemented lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {55--74},
     year = {2002},
     volume = {52},
     number = {1},
     mrnumber = {1885457},
     zbl = {0998.06006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a6/}
}
TY  - JOUR
AU  - Weber, Hans
TI  - Two extension theorems. Modular functions on complemented lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 55
EP  - 74
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a6/
LA  - en
ID  - CMJ_2002_52_1_a6
ER  - 
%0 Journal Article
%A Weber, Hans
%T Two extension theorems. Modular functions on complemented lattices
%J Czechoslovak Mathematical Journal
%D 2002
%P 55-74
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a6/
%G en
%F CMJ_2002_52_1_a6
Weber, Hans. Two extension theorems. Modular functions on complemented lattices. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 55-74. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a6/

[1] A. Avallone: Liapunov theorem for modular functions. Internat. J. Theoret. Phys. 34 (1995), 1197–1204. | MR | Zbl

[2] A. Avallone: Nonatomic vector valued modular functions. Mathematicae Polonae, Ser. I: Comment. Math. 39 (1999), 23–36. | MR | Zbl

[3] A. Avallone, G. Barbieri and R. Cilia: Control and separating points of modular functions. Math. Slovaca 49 (1999), 155–182. | MR

[4] A. Avallone and J. Hamhalter: Extension theorems (Vector measures on quantum logics). Czechoslovak Math. J. 46 (1996), 179–192. | MR

[5] A. Avallone and M. A. Lepellere: Modular functions: Uniform boundedness and compactness. Rend. Circ. Mat. Palermo 47 (1998), 221–264. | DOI | MR

[6] A. Basile: Controls of families of finitely additive functions. Ricerche Mat. 35 (1986), 291–302. | MR | Zbl

[7] G. Birkhoff: Lattice Theory. AMS colloquium Publications, Providence, Rhode Island, 25 (1984). | MR

[8] J. K. Brooks, D. Candeloro and A. Martellotti: On finitely additive measures in nuclear spaces. Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 37–50. | MR

[9] I. Fleischer and T. Traynor: Equivalence of group-valued measures on an abstract lattice. Bull. Acad. Pol. Sci., Sér. Sci. Math. 28 (1980), 549–556. | MR

[10] I. Fleischer and T. Traynor: Group-valued modular functions. Algebra Universalis 14 (1982), 287–291. | DOI | MR

[11] G. Grätzer: General Lattice Theory. Pure and Applied Mathematical Series. Academic Press, San Diego, 1978. | MR

[12] V. M. Kadets: A remark on Lyapunov theorem on vector measures. Funct. Anal. Appl. 25 (1991), 295–297. | MR

[13] V. M. Kadets and G. Shekhtman: The Lyapunov theorem for $\ell _p$-valued measures. St Petersburg Math. J. 4 (1993), 961–966. | MR

[14] J. J. Uhl: The range of vector-valued measures. Proc. Amer. Math. Soc. 23 (1969), 158–163. | DOI | MR

[15] T. Traynor: The Lebesgue decomposition for group-valued set functions. Trans. Amer. Math. Soc. 220 (1976), 307–319. | DOI | MR | Zbl

[16] H. Weber: Group- and vector-valued $s$-bounded contents. Measure Theory, Proc. Conf. (Oberwolfach 1983). | MR | Zbl

[17] H. Weber: Uniform lattices I: A generalization of topological Riesz spaces and topological Boolean rings; Uniform lattices II: Order continuity and exhaustivity. Ann. Mat. Pura Appl. 160 (1991 1991), 347–370. | DOI | MR

[18] H. Weber: Valuations on complemented lattices. Inter. J. Theoret. Phys. 34 (1995), 1799–1806. | MR | Zbl

[19] H. Weber: On modular functions. Funct. Approx. Comment. Math. 24 (1996), 35–52. | MR | Zbl

[20] H. Weber: Lattice uniformities and modular functions. Atti Sem. Mat. Fis. Univ. Modena XLVII (1999), 159–182. | MR

[21] H. Weber: Complemented uniform lattices. Topology Appl. 105 (2000), 47–64. | DOI | MR | Zbl