Keywords: complemented lattices; orthomodular lattices; exhaustive modular functions; measures; extension; Vitali-Hahn-Saks theorem; Nikodým theorems; Liapunoff theorem
@article{CMJ_2002_52_1_a6,
author = {Weber, Hans},
title = {Two extension theorems. {Modular} functions on complemented lattices},
journal = {Czechoslovak Mathematical Journal},
pages = {55--74},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885457},
zbl = {0998.06006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a6/}
}
Weber, Hans. Two extension theorems. Modular functions on complemented lattices. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 55-74. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a6/
[1] A. Avallone: Liapunov theorem for modular functions. Internat. J. Theoret. Phys. 34 (1995), 1197–1204. | MR | Zbl
[2] A. Avallone: Nonatomic vector valued modular functions. Mathematicae Polonae, Ser. I: Comment. Math. 39 (1999), 23–36. | MR | Zbl
[3] A. Avallone, G. Barbieri and R. Cilia: Control and separating points of modular functions. Math. Slovaca 49 (1999), 155–182. | MR
[4] A. Avallone and J. Hamhalter: Extension theorems (Vector measures on quantum logics). Czechoslovak Math. J. 46 (1996), 179–192. | MR
[5] A. Avallone and M. A. Lepellere: Modular functions: Uniform boundedness and compactness. Rend. Circ. Mat. Palermo 47 (1998), 221–264. | DOI | MR
[6] A. Basile: Controls of families of finitely additive functions. Ricerche Mat. 35 (1986), 291–302. | MR | Zbl
[7] G. Birkhoff: Lattice Theory. AMS colloquium Publications, Providence, Rhode Island, 25 (1984). | MR
[8] J. K. Brooks, D. Candeloro and A. Martellotti: On finitely additive measures in nuclear spaces. Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 37–50. | MR
[9] I. Fleischer and T. Traynor: Equivalence of group-valued measures on an abstract lattice. Bull. Acad. Pol. Sci., Sér. Sci. Math. 28 (1980), 549–556. | MR
[10] I. Fleischer and T. Traynor: Group-valued modular functions. Algebra Universalis 14 (1982), 287–291. | DOI | MR
[11] G. Grätzer: General Lattice Theory. Pure and Applied Mathematical Series. Academic Press, San Diego, 1978. | MR
[12] V. M. Kadets: A remark on Lyapunov theorem on vector measures. Funct. Anal. Appl. 25 (1991), 295–297. | MR
[13] V. M. Kadets and G. Shekhtman: The Lyapunov theorem for $\ell _p$-valued measures. St Petersburg Math. J. 4 (1993), 961–966. | MR
[14] J. J. Uhl: The range of vector-valued measures. Proc. Amer. Math. Soc. 23 (1969), 158–163. | DOI | MR
[15] T. Traynor: The Lebesgue decomposition for group-valued set functions. Trans. Amer. Math. Soc. 220 (1976), 307–319. | DOI | MR | Zbl
[16] H. Weber: Group- and vector-valued $s$-bounded contents. Measure Theory, Proc. Conf. (Oberwolfach 1983). | MR | Zbl
[17] H. Weber: Uniform lattices I: A generalization of topological Riesz spaces and topological Boolean rings; Uniform lattices II: Order continuity and exhaustivity. Ann. Mat. Pura Appl. 160 (1991 1991), 347–370. | DOI | MR
[18] H. Weber: Valuations on complemented lattices. Inter. J. Theoret. Phys. 34 (1995), 1799–1806. | MR | Zbl
[19] H. Weber: On modular functions. Funct. Approx. Comment. Math. 24 (1996), 35–52. | MR | Zbl
[20] H. Weber: Lattice uniformities and modular functions. Atti Sem. Mat. Fis. Univ. Modena XLVII (1999), 159–182. | MR
[21] H. Weber: Complemented uniform lattices. Topology Appl. 105 (2000), 47–64. | DOI | MR | Zbl