New proof of a characterization of geodetic graphs
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 33-39 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In [3], the present author used a binary operation as a tool for characterizing geodetic graphs. In this paper a new proof of the main result of the paper cited above is presented. The new proof is shorter and simpler.
In [3], the present author used a binary operation as a tool for characterizing geodetic graphs. In this paper a new proof of the main result of the paper cited above is presented. The new proof is shorter and simpler.
Classification : 05C12, 05C75, 20N02
Keywords: geodetic graphs; shortest paths; binary operations
@article{CMJ_2002_52_1_a4,
     author = {Nebesk\'y, Ladislav},
     title = {New proof of a characterization of geodetic graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {33--39},
     year = {2002},
     volume = {52},
     number = {1},
     mrnumber = {1885455},
     zbl = {0995.05124},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a4/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - New proof of a characterization of geodetic graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 33
EP  - 39
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a4/
LA  - en
ID  - CMJ_2002_52_1_a4
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T New proof of a characterization of geodetic graphs
%J Czechoslovak Mathematical Journal
%D 2002
%P 33-39
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a4/
%G en
%F CMJ_2002_52_1_a4
Nebeský, Ladislav. New proof of a characterization of geodetic graphs. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 33-39. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a4/

[1] G.  Chartrand and L.  Lesniak: Graphs & Digraphs. Third edition. Chapman & Hall, London, 1996. | MR

[2] H.  M.  Mulder: The Interval Function of a Graph. Mathematisch Centrum, Amsterdam, 1980. | MR | Zbl

[3] L.  Nebeský: An algebraic characterization of geodetic graphs. Czechoslovak Math. J. 48 (123) (1998), 701–710. | DOI | MR

[4] L.  Nebeský: A tree as a finite nonempty set with a binary operation. Math. Bohem. 125 (2000), 455–458. | MR