Characterizations of totally ordered sets by their various endomorphisms
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 23-32 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize totally ordered sets within the class of all ordered sets containing at least three-element chains using a simple relationship between their isotone transformations and the so called 2-, 3-, 4-endomorphisms which are introduced in the paper. Another characterization of totally ordered sets within the class of ordered sets of a locally finite height with at least four-element chains in terms of the regular semigroup theory is also given.
We characterize totally ordered sets within the class of all ordered sets containing at least three-element chains using a simple relationship between their isotone transformations and the so called 2-, 3-, 4-endomorphisms which are introduced in the paper. Another characterization of totally ordered sets within the class of ordered sets of a locally finite height with at least four-element chains in terms of the regular semigroup theory is also given.
Classification : 06A05, 20M17, 20M20
Keywords: endomorphisms; totally ordered sets—chains; isotone mappings; regular semigroups
@article{CMJ_2002_52_1_a3,
     author = {Hort, Daniel and Chvalina, Jan and Mou\v{c}ka, Ji\v{r}{\'\i}},
     title = {Characterizations of totally ordered sets by their various endomorphisms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {23--32},
     year = {2002},
     volume = {52},
     number = {1},
     mrnumber = {1885454},
     zbl = {0998.06001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a3/}
}
TY  - JOUR
AU  - Hort, Daniel
AU  - Chvalina, Jan
AU  - Moučka, Jiří
TI  - Characterizations of totally ordered sets by their various endomorphisms
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 23
EP  - 32
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a3/
LA  - en
ID  - CMJ_2002_52_1_a3
ER  - 
%0 Journal Article
%A Hort, Daniel
%A Chvalina, Jan
%A Moučka, Jiří
%T Characterizations of totally ordered sets by their various endomorphisms
%J Czechoslovak Mathematical Journal
%D 2002
%P 23-32
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a3/
%G en
%F CMJ_2002_52_1_a3
Hort, Daniel; Chvalina, Jan; Moučka, Jiří. Characterizations of totally ordered sets by their various endomorphisms. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 23-32. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a3/

[1] M. E.  Adams and M.  Gould: Posets whose monoids of order-preserving maps are regular. Order 6 (1989), 195–201. | DOI | MR

[2] A. Ja.  Aizenštat: Regular semigroups of endomorphisms of ordered sets. Uč. zapiski Leningrad. Gos. Ped. Inst. 387 (1968), 3–11. (Russian) | MR

[3] G.  Birkhoff: Lattice Theory. AMS Colloq. Publ. 25, Providence, 1979. | MR | Zbl

[4] J.  Chvalina: Functional Graphs, Quasi-Ordered Sets and Commutative Hypergroups. Vydavatelství Masarykovy Univerzity, Brno, 1995. (Czech)

[5] J. Chvalina and L.  Chvalinová: Locally finite rooted trees with regular monoids of local automorphisms. Knižnice odb. věd. spisů VUT v Brně B-119 (1988), 71–86.

[6] P.  Corsini: Prolegomena of Hypergroup Theory. Aviani Editore, 1993. | MR | Zbl

[7] D.  Hort: A construction of hypergroups from ordered structures and their morphisms. Presented on the Seventh Sypmposium on AHA, Taormina, Italy 1999. (to appear). | MR

[8] J. M.  Howie: An Introduction to Semigroup Theory. Academic Press, New York, 1976. | MR | Zbl

[9] J.  Jantosciak: Homomorphisms, equivalences and reductions in hypergroups. Riv. di Mat. Pura ed Appl. 9 (1991), 23–47. | MR | Zbl

[10] L.  Kosmák: Set Algebra. Vydavatelství Masarykovy Univerzity, Brno, 1995. (Czech)

[11] J.  Moučka: Connected functional graphs with regular endomorphism monoids and their hypergroups. Sborník prací PedF MU, Brno 152 (2000), 53–59. (Czech)

[12] J.  Novák: On partition of an ordered continuum. Fundamenta Math. XXXIX (1952), 53–64. | MR