Keywords: Stiefel-Whitney class; flag manifold; span; fibre bundle
@article{CMJ_2002_52_1_a2,
author = {Ajayi, Deborah O. and Ilori, Samuel A.},
title = {Stiefel-Whitney classes of the flag manifold ${\Bbb R}F(1,1,n-2)$},
journal = {Czechoslovak Mathematical Journal},
pages = {17--21},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885453},
zbl = {0997.57039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a2/}
}
Ajayi, Deborah O.; Ilori, Samuel A. Stiefel-Whitney classes of the flag manifold ${\Bbb R}F(1,1,n-2)$. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 17-21. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a2/
[1] A. Borel: La cohomologie $\mathop {\mathrm mod} 2$ de certains espaces homogénes. Comment. Math. Helvetici 27 (1953), 165–197. | DOI | MR
[2] J. Korbaš: Vector fields on real flag manifolds. Ann. Global Anal. Geom. 3 (1985), 173–184. | DOI | MR
[3] J. Korbaš: Some partial formulae for Stiefel-Whitney classes of Grassmannians. Czechoslovak Math. J. 36 (111) (1986), 535–540. | MR
[4] J. Korbaš: Note on Stiefel-Whitney classes of flag manifolds. Rend. Circ. Mat. Palermo 2 (Suppl. 16) (1987), 109–111. | MR
[5] J. Korbaš and P. Zvengrowski: The vector field problem: A survey with emphasis on specific manifolds. Expo. Math. 12 (1994), 1–30. | MR
[6] K. Y. Lam: A formula for the tangent bundle of flag manifolds and related manifolds. Trans. Amer. Math. Soc. 213 (1975), 305–314. | DOI | MR | Zbl
[7] J. Milnor and J. Stasheff: Characteristic Classes. Annals of Mathematics Studies vol. 76, Princeton Univ. Press, Princeton, 1974. | MR
[8] E. Thomas: On tensor products of $n$-plane bundles. Arch. Math. (Basel) X (1959), 174–179. | DOI | MR | Zbl
[9] E. Thomas: Vector fields on manifolds. Bull. Amer. Math. Soc. 75 (1969), 643–683. | DOI | MR | Zbl