On the set of solutions of some nonconvex nonclosed hyperbolic differential inclusions
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 215-224 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a class of nonconvex and nonclosed hyperbolic differential inclusions and we prove the arcwise connectedness of the solution set.
We consider a class of nonconvex and nonclosed hyperbolic differential inclusions and we prove the arcwise connectedness of the solution set.
Classification : 34A60, 35B30, 35L20, 35L70, 35R70
Keywords: hyperbolic differential inclusions; fixed point; solution set
@article{CMJ_2002_52_1_a15,
     author = {Cernea, Aurelian},
     title = {On the set of solutions of some nonconvex nonclosed hyperbolic differential inclusions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {215--224},
     year = {2002},
     volume = {52},
     number = {1},
     mrnumber = {1885466},
     zbl = {1010.34002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a15/}
}
TY  - JOUR
AU  - Cernea, Aurelian
TI  - On the set of solutions of some nonconvex nonclosed hyperbolic differential inclusions
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 215
EP  - 224
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a15/
LA  - en
ID  - CMJ_2002_52_1_a15
ER  - 
%0 Journal Article
%A Cernea, Aurelian
%T On the set of solutions of some nonconvex nonclosed hyperbolic differential inclusions
%J Czechoslovak Mathematical Journal
%D 2002
%P 215-224
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a15/
%G en
%F CMJ_2002_52_1_a15
Cernea, Aurelian. On the set of solutions of some nonconvex nonclosed hyperbolic differential inclusions. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 215-224. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a15/

[1] F. S. De Blasi and J.  Myjak: On the set of solutions of a differential inclusion. Bull. Inst. Math. Acad. Sinica 14 (1986), 271–275. | MR

[2] F. S.  De Blasi and J.  Myjak: On the structure of the set of solutions of the Darboux problem of hyperbolic equations. Proc. Edinburgh Math. Soc. 29 (1986), 7–14. | MR

[3] F. S.  De Blasi, G.  Pianigiani and V.  Staicu: On the solution sets of some nonconvex hyperbolic differential inclusions. Czechoslovak Math.  J. 45 (1995), 107–116. | MR

[4] L.  Gorniewicz and T.  Pruszko: On the set of solutions of the Darboux problem for some hyperbolic equations. Bull. Acad. Polon. Sci. Math. Astronom. Phys. 38 (1980), 279–285. | MR

[5] S.  Marano: Generalized solutions of partial differential inclusions depending on a parameter. Rend. Accad. Naz. Sci. Mem. Mat. 107 (1989), 281–295. | MR | Zbl

[6] S.  Marano: Fixed points of multivalued contractions with nonclosed, nonconvex values. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 5 (1994), 203–212. | MR | Zbl

[7] S.  Marano and V.  Staicu: On the set of solutions to a class of nonconvex nonclosed differential inclusions. Acta Math. Hungar. 76 (1997), 287–301. | DOI | MR

[8] S.  Marano and V. Staicu: Correction to the paper On the set of solutions to a class of nonconvex nonclosed differential inclusions. Acta Math. Hungar. 78 (1998), 267–268. | DOI | MR

[9] V.  Staicu: On a non-convex hyperbolic differential inclusion. Proc. Edinburgh Math. Soc. 35 (1992), 375–382. | MR | Zbl

[10] G.  Teodoru: A characterization of the solutions of the Darboux problem for the equation $u_{xy}\in F(x,y,u)$. An. Stiint. Univ. Al. I. Cuza Iasi Mat. 33 (1987), 33–38. | MR