Keywords: hyperbolic differential inclusions; fixed point; solution set
@article{CMJ_2002_52_1_a15,
author = {Cernea, Aurelian},
title = {On the set of solutions of some nonconvex nonclosed hyperbolic differential inclusions},
journal = {Czechoslovak Mathematical Journal},
pages = {215--224},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885466},
zbl = {1010.34002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a15/}
}
Cernea, Aurelian. On the set of solutions of some nonconvex nonclosed hyperbolic differential inclusions. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 215-224. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a15/
[1] F. S. De Blasi and J. Myjak: On the set of solutions of a differential inclusion. Bull. Inst. Math. Acad. Sinica 14 (1986), 271–275. | MR
[2] F. S. De Blasi and J. Myjak: On the structure of the set of solutions of the Darboux problem of hyperbolic equations. Proc. Edinburgh Math. Soc. 29 (1986), 7–14. | MR
[3] F. S. De Blasi, G. Pianigiani and V. Staicu: On the solution sets of some nonconvex hyperbolic differential inclusions. Czechoslovak Math. J. 45 (1995), 107–116. | MR
[4] L. Gorniewicz and T. Pruszko: On the set of solutions of the Darboux problem for some hyperbolic equations. Bull. Acad. Polon. Sci. Math. Astronom. Phys. 38 (1980), 279–285. | MR
[5] S. Marano: Generalized solutions of partial differential inclusions depending on a parameter. Rend. Accad. Naz. Sci. Mem. Mat. 107 (1989), 281–295. | MR | Zbl
[6] S. Marano: Fixed points of multivalued contractions with nonclosed, nonconvex values. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 5 (1994), 203–212. | MR | Zbl
[7] S. Marano and V. Staicu: On the set of solutions to a class of nonconvex nonclosed differential inclusions. Acta Math. Hungar. 76 (1997), 287–301. | DOI | MR
[8] S. Marano and V. Staicu: Correction to the paper On the set of solutions to a class of nonconvex nonclosed differential inclusions. Acta Math. Hungar. 78 (1998), 267–268. | DOI | MR
[9] V. Staicu: On a non-convex hyperbolic differential inclusion. Proc. Edinburgh Math. Soc. 35 (1992), 375–382. | MR | Zbl
[10] G. Teodoru: A characterization of the solutions of the Darboux problem for the equation $u_{xy}\in F(x,y,u)$. An. Stiint. Univ. Al. I. Cuza Iasi Mat. 33 (1987), 33–38. | MR