Keywords: fibered manifold; jet space; variational sequence; symmetries; conservation laws; Euler-Lagrange morphism; Helmholtz morphism
@article{CMJ_2002_52_1_a14,
author = {Francaviglia, Mauro and Palese, Marcella and Vitolo, Raffaele},
title = {Symmetries in finite order variational sequences},
journal = {Czechoslovak Mathematical Journal},
pages = {197--213},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885465},
zbl = {1006.58014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a14/}
}
TY - JOUR AU - Francaviglia, Mauro AU - Palese, Marcella AU - Vitolo, Raffaele TI - Symmetries in finite order variational sequences JO - Czechoslovak Mathematical Journal PY - 2002 SP - 197 EP - 213 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a14/ LA - en ID - CMJ_2002_52_1_a14 ER -
Francaviglia, Mauro; Palese, Marcella; Vitolo, Raffaele. Symmetries in finite order variational sequences. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 197-213. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a14/
[AnDu80] I. M. Anderson and T. Duchamp: On the existence of global variational principles. Amer. Math. J. 102 (1980), 781–868. | DOI | MR
[FFP98] L. Fatibene, M. Francaviglia and M. Palese: Conservation laws and variational sequences in gauge-natural theories. Math. Proc. Cambridge Phil. Soc. 130 (2001), 555–569. | DOI | MR
[Fe84] M. Ferraris: Fibered connections and global Poincaré-Cartan forms in higher-order calculus of variations. Proc. Diff. Geom. and its Appl. (Nové Město na Moravě, 1983), D. Krupka (ed.), J. E. Purkyně University, Brno, 1984, pp. 61–91. | MR | Zbl
[FeFr91] M. Ferraris and M. Francaviglia: The Lagrangian approach to conserved quantities in general relativity. Mechanics, Analysis and Geometry: 200 Years after Lagrange, M. Francaviglia (ed.), Elsevier Science Publishers B. V., Amsterdam, 1991, pp. 451–488. | MR
[FPV98] M. Francaviglia, M. Palese and R. Vitolo: Superpotentials in variational sequences. Proc. VII Conf. Diff. Geom. and Appl., Satellite Conf. of ICM in Berlin (Brno 1998), I. Kolář et al. (eds.), Masaryk University, Brno, 1999, pp. 469–480. | MR
[GaMu82] P. L. Garcia and J. Muñoz: On the geometrical structure of higher order variational calculus. Proc. IUTAM-ISIMM Symp. on Modern Developments in Anal. Mech. (Torino, 1982), S. Benenti, M. Francaviglia and A. Lichnerowicz (eds.), Tecnoprint, Bologna, 1983, pp. 127–147. | MR
[KMS93] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry. Springer-Verlag, New York, 1993. | MR
[Kol80] I. Kolář: Lie derivatives and higher order Lagrangians. Proc. Diff. Geom. and its Appl. (Nové Město na Moravě, 1980), O. Kowalski (ed.), Univerzita Karlova, Praha, 1981, pp. 117–123. | MR
[Kol83] I. Kolář: A geometrical version of the higher order hamilton formalism in fibred manifolds. J. Geom. Phys. 1 (1984), 127–137. | DOI | MR
[Kru73] D. Krupka: Some geometric aspects of variational problems in fibred manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14, J. E. Purkyně Univ., Brno (1973), 1–65.
[Kru90] D. Krupka: Variational sequences on finite order jet spaces. Proc. Diff. Geom. and its Appl. (Brno, Czech Republic, 1989), J. Janyška, D. Krupka (eds.), World Scientific, Singapore, 1990, pp. 236–254. | MR | Zbl
[Kru93] D. Krupka: Topics in the calculus of variations: Finite order variational sequences. Proc. Diff. Geom. and its Appl, Opava, 1993, pp. 473–495. | MR | Zbl
[KrTr74] D. Krupka and A. Trautman: General invariance of Lagrangian structures. Bull. Acad. Polon. Sci., Math. Astr. Phys. 22 (1974), 207–211. | MR
[MaMo83a] L. Mangiarotti and M. Modugno: Fibered spaces, jet spaces and connections for field theories. Proc. Int. Meet. on Geom. and Phys., Pitagora Editrice, Bologna, 1983, pp. 135–165. | MR
[Nov74] J. Novotný: Modern methods of differential geometry and the conservation laws problem. Folia Fac. Sci. Nat. UJEP Brunensis (Physica) 19 (1974), 1–55.
[Sau89] D. J. Saunders: The Geometry of Jet Bundles. Cambridge Univ. Press, Cambridge, 1989. | MR | Zbl
[Tak79] F. Takens: A global version of the inverse problem of the calculus of variations. J. Diff. Geom. 14 (1979), 543–562. | DOI | MR | Zbl
[Tra67] A. Trautman: Noether equations and conservation laws. Comm. Math. Phys. 6 (1967), 248–261. | DOI | MR | Zbl
[Tra96] A. Trautman: A metaphysical remark on variational principles. Acta Phys. Pol. B 27 (1996), 839–848. | MR | Zbl
[Tul77] W. M. Tulczyjew: The Lagrange complex. Bull. Soc. Math. France 105 (1977), 419–431. | DOI | MR | Zbl
[Vin77] A. M. Vinogradov: On the algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl. 18 (1977), 1200–1204. | Zbl
[Vin78] A. M. Vinogradov: A spectral sequence associated with a non-linear differential equation, and algebro-geometric foundations of Lagrangian field theory with constraints. Soviet Math. Dokl. 19 (1978), 144–148.
[Vit97] R. Vitolo: On different geometric formulations of Lagrangian formalism. Diff. Geom. and its Appl. 10 (1999), 225–255. | DOI | MR | Zbl
[Vit98] R. Vitolo: Finite order Lagrangian bicomplexes. Math. Proc. Cambridge Phil. Soc. 125 (1998), 321–333. | DOI | MR
[Vit98b] R. Vitolo: A new infinite order formulation of variational sequences. Arch. Math. Univ. Brunensis 34 (1998), 483–504. | MR | Zbl
[Wel80] R. O. Wells: Differential Analysis on Complex Manifolds (GTM, n. 65). Springer-Verlag, Berlin, 1980. | MR