Keywords: semigroup; abelian; commutative; finitely generated; positive definite; completely positive definite; character
@article{CMJ_2002_52_1_a13,
author = {Bisgaard, Torben Maack},
title = {On the {Stieltjes} moment problem on semigroups},
journal = {Czechoslovak Mathematical Journal},
pages = {155--196},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885464},
zbl = {1021.43003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a13/}
}
Bisgaard, Torben Maack. On the Stieltjes moment problem on semigroups. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 155-196. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a13/
[1] N. I. Akhiezer: The Classical Moment Problem. Oliver and Boyd, Edinburgh, 1965. | Zbl
[2] C. Berg: Positive definite and related functions on semigroups. In: The Analytical and Topological Theory of Semigroups, K. H. Hofmann, J. D. Lawson and J. S. Pym (eds.), Walter de Gruyter & Co., Berlin, 1990. | MR | Zbl
[3] C. Berg, J. P. R. Christensen and C. U. Jensen: A remark on the multidimensional moment problem. Math. Ann. 243 (1979), 163–169. | DOI | MR
[4] C. Berg, J. P. R. Christensen and P. Ressel: Harmonic Analysis on Semigroups. Springer-Verlag, Berlin, 1984. | MR
[5] T. M. Bisgaard: Extension of characters on $*$-semigroups. Math. Ann. 282 (1988), 251–258. | DOI | MR
[6] T. M. Bisgaard: Separation by characters or positive definite functions. Semigroup Forum 53 (1996), 317–320. | DOI | MR | Zbl
[7] T. M. Bisgaard: Semigroups of moment functions. Ark. Mat. 35 (1997), 127–156. | DOI | MR | Zbl
[8] T. M. Bisgaard: On perfect semigroups. Acta Math. Hung. 79 (1998), 269–294. | DOI | MR | Zbl
[9] T. M. Bisgaard: Extensions of Hamburger’s Theorem. Semigroup Forum 57 (1998), 397–429. | DOI | MR | Zbl
[10] T. M. Bisgaard: A method of moments for semigroups $S$ without zero, but satisfying $S=S+S$. Semigroup Forum 61 (2000), 317–332. | DOI | MR | Zbl
[11] T. M. Bisgaard: Semiperfect countable $C$-finite semigroups satisfying $S=S+S$. Math. Ann. 315 (1999), 141–168. | DOI | MR
[12] T. M. Bisgaard and P. Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups. Math. Z. 200 (1989), 511–525. | MR
[13] A. Brøndsted: An Introduction to Convex Polytopes. Springer-Verlag, Berlin, 1983. | MR
[14] A. H. Clifford and G. B. Preston: The Algebraic Theory of Semigroups. American Mathematical Society, Providence, 1961. | MR
[15] D. Hilbert: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32 (1888), 342–350. | DOI | MR
[16] W. B. Jones, O. Njåstad and W. J. Thron: Orthogonal Laurent polynomials and the strong Hamburger moment problem. J. Math. Anal. Appl. 98 (1984), 528–554. | DOI | MR
[17] S. L. Lauritzen: Extremal Families and Systems of Sufficient Statistics. Springer-Verlag, Berlin, 1988. | MR | Zbl
[18] A. W. Marshall and I. Olkin: Inequalities: Theory of Majorization and its Applications. Academic Press, New York, 1979. | MR
[19] N. Sakakibara: Moment problems on subsemigroups of $N_0^k$ and $Z^k$. Semigroup Forum 45 (1992), 241–248. | DOI | MR
[20] K. Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional. Math. Nachr. 88 (1979), 385–390. | DOI | MR
[21] T. J. Stieltjes: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Math. 8 (1894), 1–122. | DOI | MR