On the Stieltjes moment problem on semigroups
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 155-196 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).
We characterize finitely generated abelian semigroups such that every completely positive definite function (a function all of whose shifts are positive definite) is an integral of nonnegative miltiplicative real-valued functions (called nonnegative characters).
Classification : 43A05, 43A35, 44A60
Keywords: semigroup; abelian; commutative; finitely generated; positive definite; completely positive definite; character
@article{CMJ_2002_52_1_a13,
     author = {Bisgaard, Torben Maack},
     title = {On the {Stieltjes} moment problem on semigroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {155--196},
     year = {2002},
     volume = {52},
     number = {1},
     mrnumber = {1885464},
     zbl = {1021.43003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a13/}
}
TY  - JOUR
AU  - Bisgaard, Torben Maack
TI  - On the Stieltjes moment problem on semigroups
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 155
EP  - 196
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a13/
LA  - en
ID  - CMJ_2002_52_1_a13
ER  - 
%0 Journal Article
%A Bisgaard, Torben Maack
%T On the Stieltjes moment problem on semigroups
%J Czechoslovak Mathematical Journal
%D 2002
%P 155-196
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a13/
%G en
%F CMJ_2002_52_1_a13
Bisgaard, Torben Maack. On the Stieltjes moment problem on semigroups. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 155-196. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a13/

[1] N. I.  Akhiezer: The Classical Moment Problem. Oliver and Boyd, Edinburgh, 1965. | Zbl

[2] C.  Berg: Positive definite and related functions on semigroups. In: The Analytical and Topological Theory of Semigroups, K. H.  Hofmann, J. D.  Lawson and J. S.  Pym (eds.), Walter de Gruyter &  Co., Berlin, 1990. | MR | Zbl

[3] C.  Berg, J. P. R.  Christensen and C. U.  Jensen: A remark on the multidimensional moment problem. Math. Ann. 243 (1979), 163–169. | DOI | MR

[4] C.  Berg, J. P. R.  Christensen and P.  Ressel: Harmonic Analysis on Semigroups. Springer-Verlag, Berlin, 1984. | MR

[5] T. M.  Bisgaard: Extension of characters on $*$-semigroups. Math. Ann. 282 (1988), 251–258. | DOI | MR

[6] T. M.  Bisgaard: Separation by characters or positive definite functions. Semigroup Forum 53 (1996), 317–320. | DOI | MR | Zbl

[7] T. M.  Bisgaard: Semigroups of moment functions. Ark. Mat. 35 (1997), 127–156. | DOI | MR | Zbl

[8] T. M.  Bisgaard: On perfect semigroups. Acta Math. Hung. 79 (1998), 269–294. | DOI | MR | Zbl

[9] T. M.  Bisgaard: Extensions of Hamburger’s Theorem. Semigroup Forum 57 (1998), 397–429. | DOI | MR | Zbl

[10] T. M.  Bisgaard: A method of moments for semigroups  $S$ without zero, but satisfying $S=S+S$. Semigroup Forum 61 (2000), 317–332. | DOI | MR | Zbl

[11] T. M.  Bisgaard: Semiperfect countable $C$-finite semigroups satisfying $S=S+S$. Math. Ann. 315 (1999), 141–168. | DOI | MR

[12] T. M.  Bisgaard and P.  Ressel: Unique disintegration of arbitrary positive definite functions on $*$-divisible semigroups. Math.  Z. 200 (1989), 511–525. | MR

[13] A.  Brøndsted: An Introduction to Convex Polytopes. Springer-Verlag, Berlin, 1983. | MR

[14] A. H.  Clifford and G. B.  Preston: The Algebraic Theory of Semigroups. American Mathematical Society, Providence, 1961. | MR

[15] D.  Hilbert: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math. Ann. 32 (1888), 342–350. | DOI | MR

[16] W. B.  Jones, O.  Njåstad and W. J.  Thron: Orthogonal Laurent polynomials and the strong Hamburger moment problem. J.  Math. Anal. Appl. 98 (1984), 528–554. | DOI | MR

[17] S. L.  Lauritzen: Extremal Families and Systems of Sufficient Statistics. Springer-Verlag, Berlin, 1988. | MR | Zbl

[18] A. W.  Marshall and I.  Olkin: Inequalities: Theory of Majorization and its Applications. Academic Press, New York, 1979. | MR

[19] N.  Sakakibara: Moment problems on subsemigroups of $N_0^k$ and $Z^k$. Semigroup Forum 45 (1992), 241–248. | DOI | MR

[20] K.  Schmüdgen: An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional. Math. Nachr. 88 (1979), 385–390. | DOI | MR

[21] T. J.  Stieltjes: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse Math. 8 (1894), 1–122. | DOI | MR