Cesàro wedge and weak Cesàro wedge $FK$-spaces
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 141-154 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we deal with Cesàro wedge and weak Cesàro wedge $FK$-spaces, and give several characterizations. Some applications of these spaces to general summability domains are also studied.
In this paper we deal with Cesàro wedge and weak Cesàro wedge $FK$-spaces, and give several characterizations. Some applications of these spaces to general summability domains are also studied.
Classification : 40C05, 46A35, 46A45, 47B37
Keywords: $FK$-space; wedge $FK$-space; weak wedge $FK$-space; compact operator; matrix mapping
@article{CMJ_2002_52_1_a12,
     author = {Ince, H. G.},
     title = {Ces\`aro wedge and weak {Ces\`aro} wedge $FK$-spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {141--154},
     year = {2002},
     volume = {52},
     number = {1},
     mrnumber = {1885463},
     zbl = {0996.46004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a12/}
}
TY  - JOUR
AU  - Ince, H. G.
TI  - Cesàro wedge and weak Cesàro wedge $FK$-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 141
EP  - 154
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a12/
LA  - en
ID  - CMJ_2002_52_1_a12
ER  - 
%0 Journal Article
%A Ince, H. G.
%T Cesàro wedge and weak Cesàro wedge $FK$-spaces
%J Czechoslovak Mathematical Journal
%D 2002
%P 141-154
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a12/
%G en
%F CMJ_2002_52_1_a12
Ince, H. G. Cesàro wedge and weak Cesàro wedge $FK$-spaces. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 141-154. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a12/

[1] G.  Bennett: The Glinding Humps technique for $FK$-spaces. Trans. Amer. Math. Soc. 166 (1972), 285–292. | MR

[2] G.  Bennett: A new class of sequence spaces with applications in summability theory. J.  Reine Angew. Math. 266 (1974), 49–75. | MR | Zbl

[3] N.  Dunford and J. T. Schwartz: Linear Operators. Interscience Publishers, New York, 1958. | MR

[4] G.  Goes and S. Goes: Sequences of bounded variation and sequences of Fourier coefficients. I. Math. Z. 118 (1970), 93–102. | DOI | MR

[5] G.  Goes: Sequences of bounded variation and sequences of Fourier coefficients. II. J. Math. Anal. Appl. 39 (1972), 477–494. | DOI | MR | Zbl

[6] P. K.  Kamthan and M. Gupta: Sequence Spaces and Series. Marcel Dekker, New York, Basel, 1981. | MR

[7] K. Knopp and G. G.  Lorentz: Beiträge zur absoluten Limitierung. Arch. Math. 2 (1949), 10–16. | DOI | MR

[8] G.  Köthe: Topological Vector Spaces I. Springer-Verlag, New York, 1969. | MR

[9] A. P.  Robertson and W. J.  Robertson: Topological Vector Spaces. University Press, Cambridge, 1964. | MR

[10] A. K.  Snyder: An embedding property of sequence spaces related to Meyer-König and Zeller type theorems. Indiana Univ. Math. J. 35 (1986), 669–679. | DOI | MR | Zbl

[11] A. K.  Snyder and A.  Wilansky: Inclusion theorems and semiconservative $FK$-spaces. Rocky Mountain J.  Math. 2 (1972), 595–603. | DOI | MR

[12] A.  Wilansky: Functional Analysis. Blaisdell Press, New York-Toronto-London, 1964. | MR | Zbl

[13] A.  Wilansky: Summability Through Functional Analysis. North Holland, Amsterdam-New York-Oxford, 1984. | MR | Zbl

[14] K.  Zeller: Allgemeine Eigenschaften von Limitierungsverfahren. Math. Z. 53 (1951), 463–487. | DOI | MR | Zbl

[15] K.  Zeller: Theorie der Limitierungsverfahren. Springer-Verlag, Berlin-Göttingen-Heidel-berg, 1958. | MR | Zbl