Keywords: $FK$-space; wedge $FK$-space; weak wedge $FK$-space; compact operator; matrix mapping
@article{CMJ_2002_52_1_a12,
author = {Ince, H. G.},
title = {Ces\`aro wedge and weak {Ces\`aro} wedge $FK$-spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {141--154},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885463},
zbl = {0996.46004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a12/}
}
Ince, H. G. Cesàro wedge and weak Cesàro wedge $FK$-spaces. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 141-154. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a12/
[1] G. Bennett: The Glinding Humps technique for $FK$-spaces. Trans. Amer. Math. Soc. 166 (1972), 285–292. | MR
[2] G. Bennett: A new class of sequence spaces with applications in summability theory. J. Reine Angew. Math. 266 (1974), 49–75. | MR | Zbl
[3] N. Dunford and J. T. Schwartz: Linear Operators. Interscience Publishers, New York, 1958. | MR
[4] G. Goes and S. Goes: Sequences of bounded variation and sequences of Fourier coefficients. I. Math. Z. 118 (1970), 93–102. | DOI | MR
[5] G. Goes: Sequences of bounded variation and sequences of Fourier coefficients. II. J. Math. Anal. Appl. 39 (1972), 477–494. | DOI | MR | Zbl
[6] P. K. Kamthan and M. Gupta: Sequence Spaces and Series. Marcel Dekker, New York, Basel, 1981. | MR
[7] K. Knopp and G. G. Lorentz: Beiträge zur absoluten Limitierung. Arch. Math. 2 (1949), 10–16. | DOI | MR
[8] G. Köthe: Topological Vector Spaces I. Springer-Verlag, New York, 1969. | MR
[9] A. P. Robertson and W. J. Robertson: Topological Vector Spaces. University Press, Cambridge, 1964. | MR
[10] A. K. Snyder: An embedding property of sequence spaces related to Meyer-König and Zeller type theorems. Indiana Univ. Math. J. 35 (1986), 669–679. | DOI | MR | Zbl
[11] A. K. Snyder and A. Wilansky: Inclusion theorems and semiconservative $FK$-spaces. Rocky Mountain J. Math. 2 (1972), 595–603. | DOI | MR
[12] A. Wilansky: Functional Analysis. Blaisdell Press, New York-Toronto-London, 1964. | MR | Zbl
[13] A. Wilansky: Summability Through Functional Analysis. North Holland, Amsterdam-New York-Oxford, 1984. | MR | Zbl
[14] K. Zeller: Allgemeine Eigenschaften von Limitierungsverfahren. Math. Z. 53 (1951), 463–487. | DOI | MR | Zbl
[15] K. Zeller: Theorie der Limitierungsverfahren. Springer-Verlag, Berlin-Göttingen-Heidel-berg, 1958. | MR | Zbl