Keywords: weak congruence; CEP; WCIP; semimodular lattice; complemented lattice
@article{CMJ_2002_52_1_a10,
author = {Walendziak, Andrzej},
title = {Weak congruences of an algebra with the {CEP} and the {WCIP}},
journal = {Czechoslovak Mathematical Journal},
pages = {117--127},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885461},
zbl = {0998.08001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a10/}
}
Walendziak, Andrzej. Weak congruences of an algebra with the CEP and the WCIP. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a10/
[1] P. Crawley and R. P. Dilworth: Algebraic Theory of Lattices. Prentice Hall, Englewood Cliffs, New Jersey, 1973.
[2] E. W. Kiss, L. Marki, P. Pröhle and W. Tholen: Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness and injectivity. Studia Sci. Math Hung. 18 (1983), 79–141. | MR
[3] B. Šešelja and G. Vojvodič: A note on some lattice characterizations of Hamiltonian groups. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 19 (1989), 179–184. | MR
[4] B. Šešelja and G. Vojvodič: CEP and homomorphic images of algebras. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 19 (1989), 75–80. | MR
[5] B. Šešelja and A. Tepavčevič: Special elements of the lattice and lattice identities. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 21–29. | MR
[6] B. Šešelja and A. Tepavčevič: Weak congruences and homomorphisms. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 61–69. | MR
[7] B. Šešelja and A. Tepavčevič: On CEP and semimodularity in the lattice of weak congruences. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 22 (1992), 95–106. | MR
[8] G. Vojvodič and B. Šešelja: Subalgebras and congruences via diagonal relation. In: Algebra and Logic, Proc. of Sarajevo Conf, 1987, pp. 169–177. | MR
[9] G. Vojvodič and B. Šešelja: On the lattice of weak congruence relations. Algebra Universalis 25 (1988), 121–130. | DOI | MR