Weak congruences of an algebra with the CEP and the WCIP
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 117-127 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Here we consider the weak congruence lattice $C_{W}(A)$ of an algebra $A$ with the congruence extension property (the CEP for short) and the weak congruence intersection property (briefly the WCIP). In the first section we give necessary and sufficient conditions for the semimodularity of that lattice. In the second part we characterize algebras whose weak congruences form complemented lattices.
Here we consider the weak congruence lattice $C_{W}(A)$ of an algebra $A$ with the congruence extension property (the CEP for short) and the weak congruence intersection property (briefly the WCIP). In the first section we give necessary and sufficient conditions for the semimodularity of that lattice. In the second part we characterize algebras whose weak congruences form complemented lattices.
Classification : 06C10, 06C15, 08A30
Keywords: weak congruence; CEP; WCIP; semimodular lattice; complemented lattice
@article{CMJ_2002_52_1_a10,
     author = {Walendziak, Andrzej},
     title = {Weak congruences of an algebra with the {CEP} and the {WCIP}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {117--127},
     year = {2002},
     volume = {52},
     number = {1},
     mrnumber = {1885461},
     zbl = {0998.08001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a10/}
}
TY  - JOUR
AU  - Walendziak, Andrzej
TI  - Weak congruences of an algebra with the CEP and the WCIP
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 117
EP  - 127
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a10/
LA  - en
ID  - CMJ_2002_52_1_a10
ER  - 
%0 Journal Article
%A Walendziak, Andrzej
%T Weak congruences of an algebra with the CEP and the WCIP
%J Czechoslovak Mathematical Journal
%D 2002
%P 117-127
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a10/
%G en
%F CMJ_2002_52_1_a10
Walendziak, Andrzej. Weak congruences of an algebra with the CEP and the WCIP. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a10/

[1] P.  Crawley and R. P.  Dilworth: Algebraic Theory of Lattices. Prentice Hall, Englewood Cliffs, New Jersey, 1973.

[2] E. W.  Kiss, L.  Marki, P.  Pröhle and W.  Tholen: Categorical algebraic properties. A compendium on amalgamation, congruence extension, epimorphisms, residual smallness and injectivity. Studia Sci. Math Hung. 18 (1983), 79–141. | MR

[3] B. Šešelja and G. Vojvodič: A note on some lattice characterizations of Hamiltonian groups. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 19 (1989), 179–184. | MR

[4] B. Šešelja and G.  Vojvodič: CEP and homomorphic images of algebras. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 19 (1989), 75–80. | MR

[5] B.  Šešelja and A.  Tepavčevič: Special elements of the lattice and lattice identities. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 21–29. | MR

[6] B.  Šešelja and A.  Tepavčevič: Weak congruences and homomorphisms. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 61–69. | MR

[7] B. Šešelja and A.  Tepavčevič: On CEP and semimodularity in the lattice of weak congruences. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 22 (1992), 95–106. | MR

[8] G.  Vojvodič and B.  Šešelja: Subalgebras and congruences via diagonal relation. In: Algebra and Logic, Proc. of Sarajevo Conf, 1987, pp. 169–177. | MR

[9] G.  Vojvodič and B.  Šešelja: On the lattice of weak congruence relations. Algebra Universalis 25 (1988), 121–130. | DOI | MR