Domination in generalized Petersen graphs
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 11-16
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Generalized Petersen graphs are certain graphs consisting of one quadratic factor. For these graphs some numerical invariants concerning the domination are studied, namely the domatic number $d(G)$, the total domatic number $d_t(G)$ and the $k$-ply domatic number $d^k(G)$ for $k=2$ and $k=3$. Some exact values and some inequalities are stated.
Generalized Petersen graphs are certain graphs consisting of one quadratic factor. For these graphs some numerical invariants concerning the domination are studied, namely the domatic number $d(G)$, the total domatic number $d_t(G)$ and the $k$-ply domatic number $d^k(G)$ for $k=2$ and $k=3$. Some exact values and some inequalities are stated.
Classification :
05C38, 05C69
Keywords: domatic number; total domatic number; $k$-ply domatic number; generalized Petersen graph
Keywords: domatic number; total domatic number; $k$-ply domatic number; generalized Petersen graph
@article{CMJ_2002_52_1_a1,
author = {Zelinka, Bohdan},
title = {Domination in generalized {Petersen} graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {11--16},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885452},
zbl = {0995.05107},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a1/}
}
Zelinka, Bohdan. Domination in generalized Petersen graphs. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 11-16. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a1/
[1] C. Y. Chao and S. C. Han: A note on the toughness of generalized Petersen graphs. J. Math. Research & Exposition 12 (1987), 183–186. | MR
[2] E. J. Cockayne and S. T. Hedetniemi: Towards the theory of domination in graphs. Networks 7 (1977), 247–261. | DOI | MR
[3] E. J. Cockayne, S. T. Hedetniemi and R. M. Dawes: Total domination in graphs. Networks 10 (1980), 211–219. | DOI | MR
[4] W. Dörfler: On mapping graphs and permutation graphs. Math. Slovaca (1979), 215–228.
[5] B. Piazza, R. Ringeisen and S. Stueckle: On the vulnerability of cycle permutation graphs. Ars Combinatoria 29 (1990), 289–296. | MR
[6] B. Zelinka: On $k$-ply domatic numbers of graphs. Math. Slovaca 34 (1985), 313–318. | MR