Keywords: hypersurface in $\mathbb R^n$; nondegenerate critical point; noncompact Morse Theory; h-cobordism; Palais-Smale condition
@article{CMJ_2002_52_1_a0,
author = {Manch\'on, P. M. G.},
title = {Hypersurfaces in $\mathbb R^n$ and critical points in their external region},
journal = {Czechoslovak Mathematical Journal},
pages = {1--9},
year = {2002},
volume = {52},
number = {1},
mrnumber = {1885451},
zbl = {1017.57014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a0/}
}
Manchón, P. M. G. Hypersurfaces in $\mathbb R^n$ and critical points in their external region. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/CMJ_2002_52_1_a0/
[1] M. H. Freedman and F. S. Quinn: Topology of 4-Manifolds. Princeton Univ. Press, Princeton, NJ., 1990. | MR
[2] J. M. Gamboa and C. Ueno: Proper poynomial maps: the real case. Lectures Notes in Mathematics, 1524. Real Algebraic Geometry. Proceedings, Rennes, 1991, pp. 240–256. | MR
[3] V. Guillemin and A. Pollack: Differential Topology. Prentice-Hall, Englewood Cliffs, NJ., 1974. | MR
[4] M. W. Hirsch: Differential Topology. Springer-Verlag, Berlin, 1976. | MR | Zbl
[5] J. Margalef and E. Outerelo: Differential Topology. North Holland, Amsterdam, 1992. | MR
[6] P. M. G. Manchón: Ph. D. Thesis. (1996), Universidad Complutense de Madrid.
[7] J. Milnor: Lectures on the $h$-cobordism Theorem. Princeton Univ. Press, Princeton, NJ., 1965. | MR | Zbl
[8] J. Milnor: A procedure for killing the homotopy groups of differentiable manifolds. Proc. Sympos. Pure Math, Vol. 3 Amer. Math. Soc. Providence, R.I, 1961, pp. 39–55. | MR
[9] R. S. Palais: Lusternik-Schnirelman theory on Banach manifolds. Topology 5 (1966), 115–132. | DOI | MR | Zbl
[10] R. S. Palais and S. Smale: A generalized Morse theory. Bull. Amer. Math. Soc. 70 (1964), 165–172. | DOI | MR