Generalized analytic spaces, completeness and fragmentability
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 791-818 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classical analytic spaces can be characterized as projections of Polish spaces. We prove analogous results for three classes of generalized analytic spaces that were introduced by Z. Frolík, D. Fremlin and R. Hansell. We use the technique of complete sequences of covers. We explain also some relations of analyticity to certain fragmentability properties of topological spaces endowed with an additional metric.
Classical analytic spaces can be characterized as projections of Polish spaces. We prove analogous results for three classes of generalized analytic spaces that were introduced by Z. Frolík, D. Fremlin and R. Hansell. We use the technique of complete sequences of covers. We explain also some relations of analyticity to certain fragmentability properties of topological spaces endowed with an additional metric.
Classification : 54C35, 54D15, 54F65, 54H05
Keywords: scattered-$K$-analytic space; isolated-$K$-analytic space; Čech analytic space; $\sigma $-fragmented space; complete sequence of covers
@article{CMJ_2001_51_4_a9,
     author = {Holick\'y, Petr},
     title = {Generalized analytic spaces, completeness and fragmentability},
     journal = {Czechoslovak Mathematical Journal},
     pages = {791--818},
     year = {2001},
     volume = {51},
     number = {4},
     mrnumber = {1864043},
     zbl = {0995.54035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a9/}
}
TY  - JOUR
AU  - Holický, Petr
TI  - Generalized analytic spaces, completeness and fragmentability
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 791
EP  - 818
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a9/
LA  - en
ID  - CMJ_2001_51_4_a9
ER  - 
%0 Journal Article
%A Holický, Petr
%T Generalized analytic spaces, completeness and fragmentability
%J Czechoslovak Mathematical Journal
%D 2001
%P 791-818
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a9/
%G en
%F CMJ_2001_51_4_a9
Holický, Petr. Generalized analytic spaces, completeness and fragmentability. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 791-818. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a9/

[1] Z.  Frolík: Distinguished subclasses of Čech-analytic spaces (research announcement). Comment. Math. Univ. Carolin. 25 (1984), 368–370.

[2] Z.  Frolík: Generalizations of the $G_\delta $-property of complete metric spaces. Czechoslovak Math.  J. 10 (85) (1960), 359–379. | MR

[3] Z.  Frolík: A survey of separable descriptive theory of sets and spaces. Czechoslovak Math.  J. 20 (1970), 406–467. | MR

[4] Z.  Frolík: Čech-analytic spaces (research announcement). Comment. Math. Univ. Carolin. 25 (1984), 367–368.

[5] R. W.  Hansell: Descriptive Topology. Recent Progress in Recent Topology, North-Holland, Amsterdam, London, New York, Tokyo, 1992, pp. 275–315. | MR | Zbl

[6] R. W.  Hansell: Descriptive sets and the topology of nonseparable Banach spaces. Serdica Math.  J. 27 (2001), 1–66. | MR | Zbl

[7] R. W.  Hansell: Compact perfect sets in weak analytic spaces. Topology Appl. 41 (1991), 65–72. | DOI | MR | Zbl

[8] P.  Holický: Čech analytic and almost $K$-descriptive spaces. Czechoslovak Math.  J. 43 (1993), 451–466. | MR

[9] P.  Holický: Zdeněk Frolík and the descriptive theory of sets and spaces. Acta Univ. Carolin. Math. Phys. 32 (1991), 5–21. | MR

[10] P.  Holický: Luzin theorems for scattered-$K$-analytic spaces and Borel measures on them. Atti Sem. Mat. Fis. Univ. Modena XLIV (1996), 395–413. | MR

[11] J. E.  Jayne, I.  Namioka and C. A.  Rogers: Topological properties of Banach spaces. Proc. London Math. Soc. 66 (1993), 651–672. | MR

[12] J. E.  Jayne, I. Namioka and C. A.  Rogers: Properties like the Radon-Nikodým property. Preprint. (1989).

[13] J. E.  Jayne and C. A.  Rogers: $K$-analytic sets. Analytic Sets, Academic Press, London, 1980, pp. 1–181. | MR

[14] I.  Namioka: Separate continuity and joint continuity. Pacific J.  Math. 51 (1974), 515–531. | DOI | MR | Zbl

[15] I.  Namioka and R.  Pol: $\sigma $-fragmentability and analyticity. Mathematika 43 (1996), 172–181. | DOI | MR

[16] I.  Namioka and R.  Pol: $\sigma $-fragmentability of mappings into  $C_p(K)$. Topology Appl. 89 (1998), 249–263. | DOI | MR