Keywords: scattered-$K$-analytic space; isolated-$K$-analytic space; Čech analytic space; $\sigma $-fragmented space; complete sequence of covers
@article{CMJ_2001_51_4_a9,
author = {Holick\'y, Petr},
title = {Generalized analytic spaces, completeness and fragmentability},
journal = {Czechoslovak Mathematical Journal},
pages = {791--818},
year = {2001},
volume = {51},
number = {4},
mrnumber = {1864043},
zbl = {0995.54035},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a9/}
}
Holický, Petr. Generalized analytic spaces, completeness and fragmentability. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 791-818. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a9/
[1] Z. Frolík: Distinguished subclasses of Čech-analytic spaces (research announcement). Comment. Math. Univ. Carolin. 25 (1984), 368–370.
[2] Z. Frolík: Generalizations of the $G_\delta $-property of complete metric spaces. Czechoslovak Math. J. 10 (85) (1960), 359–379. | MR
[3] Z. Frolík: A survey of separable descriptive theory of sets and spaces. Czechoslovak Math. J. 20 (1970), 406–467. | MR
[4] Z. Frolík: Čech-analytic spaces (research announcement). Comment. Math. Univ. Carolin. 25 (1984), 367–368.
[5] R. W. Hansell: Descriptive Topology. Recent Progress in Recent Topology, North-Holland, Amsterdam, London, New York, Tokyo, 1992, pp. 275–315. | MR | Zbl
[6] R. W. Hansell: Descriptive sets and the topology of nonseparable Banach spaces. Serdica Math. J. 27 (2001), 1–66. | MR | Zbl
[7] R. W. Hansell: Compact perfect sets in weak analytic spaces. Topology Appl. 41 (1991), 65–72. | DOI | MR | Zbl
[8] P. Holický: Čech analytic and almost $K$-descriptive spaces. Czechoslovak Math. J. 43 (1993), 451–466. | MR
[9] P. Holický: Zdeněk Frolík and the descriptive theory of sets and spaces. Acta Univ. Carolin. Math. Phys. 32 (1991), 5–21. | MR
[10] P. Holický: Luzin theorems for scattered-$K$-analytic spaces and Borel measures on them. Atti Sem. Mat. Fis. Univ. Modena XLIV (1996), 395–413. | MR
[11] J. E. Jayne, I. Namioka and C. A. Rogers: Topological properties of Banach spaces. Proc. London Math. Soc. 66 (1993), 651–672. | MR
[12] J. E. Jayne, I. Namioka and C. A. Rogers: Properties like the Radon-Nikodým property. Preprint. (1989).
[13] J. E. Jayne and C. A. Rogers: $K$-analytic sets. Analytic Sets, Academic Press, London, 1980, pp. 1–181. | MR
[14] I. Namioka: Separate continuity and joint continuity. Pacific J. Math. 51 (1974), 515–531. | DOI | MR | Zbl
[15] I. Namioka and R. Pol: $\sigma $-fragmentability and analyticity. Mathematika 43 (1996), 172–181. | DOI | MR
[16] I. Namioka and R. Pol: $\sigma $-fragmentability of mappings into $C_p(K)$. Topology Appl. 89 (1998), 249–263. | DOI | MR