Keywords: infinite-dimensional Wiener process; stochastic convolution; maximal inequality
@article{CMJ_2001_51_4_a8,
author = {Hausenblas, Erika and Seidler, Jan},
title = {A note on maximal inequality for stochastic convolutions},
journal = {Czechoslovak Mathematical Journal},
pages = {785--790},
year = {2001},
volume = {51},
number = {4},
mrnumber = {1864042},
zbl = {1001.60065},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a8/}
}
Hausenblas, Erika; Seidler, Jan. A note on maximal inequality for stochastic convolutions. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 785-790. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a8/
[1] Z. Brzeźniak: On stochastic convolution in Banach spaces and applications. Stochastics Stochastics Rep. 61 (1997), 245–295. | DOI | MR
[2] Z. Brzeźniak and S. Peszat: Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces. Stochastic Processes, Physics and Geometry: New Interplays, I (Leipzig, 1999), Amer. Math. Soc., Providence, 2000, pp. 55–64. | MR
[3] G. Da Prato, M. Iannelli and L. Tubaro: Semi-linear stochastic differential equations in Hilbert spaces. Boll. Un. Mat. Ital. A (5) 16 (1979), 168–177. | MR
[4] G. Da Prato, S. Kwapień and J. Zabczyk: Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23 (1987), 1–23. | MR
[5] G. Da Prato and J. Zabczyk: A note on stochastic convolution. Stochastic Anal. Appl. 10 (1992), 143–153. | DOI | MR
[6] G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992. | MR
[7] E. B. Davies: Quantum Theory of Open Systems. Academic Press, London, 1976. | MR | Zbl
[8] D. Gątarek: A note on nonlinear stochastic equations in Hilbert spaces. Statist. Probab. Lett. 17 (1993), 387–394. | DOI | MR
[9] A. Ichikawa: Some inequalities for martingales and stochastic convolutions. Stochastic Anal. Appl. 4 (1986), 329–339. | DOI | MR | Zbl
[10] P. Kotelenez: A submartingale type inequality with applications to stochastic evolution equations. Stochastics 8 (1982), 139–151. | DOI | MR | Zbl
[11] P. Kotelenez: A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations. Stochastic Anal. Appl. 2 (1984), 245–265. | DOI | MR | Zbl
[12] J. Seidler: Da Prato-Zabczyk’s maximal inequality revisited I. Math. Bohem. 118 (1993), 67–106. | MR | Zbl
[13] J. Seidler and T. Sobukawa: Exponential integrability of stochastic convolutions. Submitted.
[14] B. Sz.-Nagy: Sur les contractions de l’espace de Hilbert. Acta Sci. Math. Szeged 15 (1953), 87–92. | MR | Zbl
[15] B. Sz.-Nagy: Transformations de l’espace de Hilbert, fonctions de type positif sur un groupe. Acta Sci. Math. Szeged 15 (1954), 104–114. | MR
[16] B. Sz.-Nagy and C. Foiaş: Harmonic Analysis of Operators on Hilbert Space. North-Holland, Amsterdam, 1970. | MR
[17] L. Tubaro: An estimate of Burkholder type for stochastic processes defined by the stochastic integral. Stochastic Anal. Appl. 2 (1984), 187–192. | DOI | MR | Zbl