On stochastic differential equations with locally unbounded drift
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 763-783 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the regularizing effect of the noise on differential equations with irregular coefficients. We present existence and uniqueness theorems for stochastic differential equations with locally unbounded drift.
We study the regularizing effect of the noise on differential equations with irregular coefficients. We present existence and uniqueness theorems for stochastic differential equations with locally unbounded drift.
Classification : 60H10, 60H40
Keywords: stochastic differential equations; Krylov’s estimate
@article{CMJ_2001_51_4_a7,
     author = {Gy\"ongy, Istv\'an and Mart{\'\i}nez, Teresa},
     title = {On stochastic differential equations with locally unbounded drift},
     journal = {Czechoslovak Mathematical Journal},
     pages = {763--783},
     year = {2001},
     volume = {51},
     number = {4},
     mrnumber = {1864041},
     zbl = {1001.60060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a7/}
}
TY  - JOUR
AU  - Gyöngy, István
AU  - Martínez, Teresa
TI  - On stochastic differential equations with locally unbounded drift
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 763
EP  - 783
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a7/
LA  - en
ID  - CMJ_2001_51_4_a7
ER  - 
%0 Journal Article
%A Gyöngy, István
%A Martínez, Teresa
%T On stochastic differential equations with locally unbounded drift
%J Czechoslovak Mathematical Journal
%D 2001
%P 763-783
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a7/
%G en
%F CMJ_2001_51_4_a7
Gyöngy, István; Martínez, Teresa. On stochastic differential equations with locally unbounded drift. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 763-783. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a7/

[1] R. Aebi: Diffusions with singular drift related to wave functions. Probab. Theory Related Fields 96 (1996), 107–121. | MR

[2] A. M. Davie: Uniqueness of solutions of stochastic differential equations. 2001, preprint. | MR | Zbl

[3] H. J.  Engelbert and W. Schmidt: On exponential local martingales connected with diffusion processes. Math. Nachr. 119 (1984), 97–115. | DOI | MR

[4] H. J.  Engelbert and W. Schmidt: On one-dimensional stochastic differential equations with generalized drift. Stochastic Differential Systems (Marseille-Luminy, 1984). Lecture Notes in Control and Information Sci. Vol. 69, Springer, Berlin-New York, 1985, pp. 143–155. | MR

[5] I. Gyöngy: On stochastic differential equations with irregular coefficients. Technical Report Series of the Laboratory for Research in Statistics and Probability 91 (1986).

[6] I.  Gyöngy and N. V. Krylov: Stochastic partial differential equations with unbounded coefficients and applications III. Stochastics Stochastics Rep. 40 (1992), 77–115. | DOI | MR

[7] I. Gyöngy and N. V. Krylov: Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Related Fields 105 (1996), 143–158. | MR

[8] H.  Kaneko and S. Nakao: A note on approximation for stochastic differential equations. Séminaire de Probabilités XXII. Lecture Notes in Mathematics Vol. 1321, Springer, Berlin-New York, 1988, pp. 155–162. | MR

[9] N. V. Krylov: On some estimates of the distribution of stochastic integrals. Izv. Akad. Nauk SSSR Ser. Math. 38 (1974), 228–248. (Russian) | MR

[10] N. V. Krylov: Estimates of the maximum of the solution of a parabolic equation and estimates of the distribution of a semimartingale. Mat. Sb. (N.S.) 130 (172) (1986), 207–221. (Russian) | MR

[11] N. V. Krylov: Controlled Diffusion Processes. Nauka, Moscow, 1977, English transl.: Springer-Verlag, New York-Berlin, 1980. | MR

[12] O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural’ceva: Linear and Quasilinear Equations of Parabolic Type. Nauka, Moscow, 1967, English transl.: American Mathematical Society, Providence, R.I., 1968.

[13] R. S. Liptser and A. N. Shiryaev: Statistics of Random Processes I. Nauka, Moscow, 1974, English transl.: Springer-Verlag, New York-Heidelberg, 1977.

[14] P. A. Meyer and W. A.  Zheng: Quelques résultats de “mécanique stochastique”. Séminaire de Probabilités XVIII. Lecture Notes in Mathematics Vol.  1059, Springer, Berlin-New York, 1984, pp. 223–244. | MR

[15] P. A. Meyer and W. A. Zheng: Sur la construction des certaines diffusions. Séminaire de Probabilités XX. Lecture Notes in Mathematics Vol.  1204, Springer, Berlin-New York, 1986, pp. 334–337. | MR

[16] M.  Nagasawa: Transformations of diffusions and Schrödinger processes. Probab. Theory Related Fields 82 (1989), 109-136. | DOI | MR

[17] M. Nagasawa, H.  Tanaka: Diffusion process in a singular mean-drift-field. Z.  Wahrsch. Verw. Gebiete 68 (1985), 247–269. | DOI | MR

[18] N. I.  Portenko: Generalized Diffusion Processes. Naukova Dumka, Kiev, 1982, English transl.: American Mathematical Society, Providence, R.I., 1990. | MR | Zbl

[19] A. V. Skorohod: Studies in the Theory of Random Processes. Izdat. Kiev. Univ., Kiev, 1961, English transl.: Addison Wesley Publ. Co., Reading, Mass., 1965. | MR

[20] D. W.  Stroock, S. R. S. Varadhan: Multidimensional Diffusion Processes. Springer-Verlag, Berlin, 1979. | MR

[21] W.  Stummer: The Novikov and entropy conditions of multidimensional diffusion processes with singular drift. Probab. Theory Related Fields 97 (1993), 515–542. | DOI | MR | Zbl

[22] A. Ju. Veretennikov: On the strong solutions of stochastic differential equations. Theory Probab. Appl. 24 (1979), 354–366. | MR | Zbl

[23] A. Yu.  Veretennikov: Parabolic equations and stochastic Itô differential equations with discontinuous coefficients in time. Mat. Zametki 31 (1982), 549–557. (Russian) | MR

[24] A. K. Zvonkin: A transformation of the phase space of a diffusion process that will remove the drift. Mat. Sb. (N.S.) 93 (135) (1974), 129–149. (Russian) | MR