Uniform exponential ergodicity of stochastic dissipative systems
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 745-762 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in $\mathbb{R}^d$ with $d\le 3$.
We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in $\mathbb{R}^d$ with $d\le 3$.
Classification : 37A30, 47A35, 60H10, 60H15, 60J99
Keywords: dissipative system; compact semigroup; exponential ergodicity; spectral gap
@article{CMJ_2001_51_4_a6,
     author = {Goldys, Beniamin and Maslowski, Bohdan},
     title = {Uniform exponential ergodicity of stochastic dissipative systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {745--762},
     year = {2001},
     volume = {51},
     number = {4},
     mrnumber = {1864040},
     zbl = {1001.60067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a6/}
}
TY  - JOUR
AU  - Goldys, Beniamin
AU  - Maslowski, Bohdan
TI  - Uniform exponential ergodicity of stochastic dissipative systems
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 745
EP  - 762
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a6/
LA  - en
ID  - CMJ_2001_51_4_a6
ER  - 
%0 Journal Article
%A Goldys, Beniamin
%A Maslowski, Bohdan
%T Uniform exponential ergodicity of stochastic dissipative systems
%J Czechoslovak Mathematical Journal
%D 2001
%P 745-762
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a6/
%G en
%F CMJ_2001_51_4_a6
Goldys, Beniamin; Maslowski, Bohdan. Uniform exponential ergodicity of stochastic dissipative systems. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 745-762. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a6/

[1] S. Aida: Uniform positivity improving property, Sobolev inequalities and spectral gaps. J. Funct. Anal. 158 (1998), 152–185. | MR | Zbl

[2] R. Arima: On general boundary value problem for parabolic equations. J.  Math. Kyoto Univ. 4 (1964), 207–243. | DOI | MR | Zbl

[3] Mu-Fa Chen: Equivalence of exponential ergodicity and $L^2$-exponential convergence for Markov chains. Stochastic Process. Appl. 87 (2000), 281–297. | MR

[4] A. Chojnowska-Michalik and B. Goldys: Existence, uniqueness and invariant measures for stochastic semilinear equations in Hilbert spaces. Probab. Theory Related Fields 102 (1995), 331–356. | DOI | MR

[5] A. Chojnowska-Michalik and B. Goldys: Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator. J.  Math. Kyoto Univ. 36 (1996), 481–498. | DOI | MR

[6] G. Da Prato: Large asymptotic behaviour of Kolmogorov equations in Hilbert spaces. Partial Differential Equations (Praha, 1998), Chapman & Hall/CRC, Boca Raton, 2000, pp. 111–120. | MR | Zbl

[7] G. Da Prato: Poincaré inequality for some measures in Hilbert spaces and application to spectral gap for transition semigroups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 25 (1997), 419–431. | MR | Zbl

[8] G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992. | MR

[9] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge, 1996. | MR

[10] G. Da Prato, A. Debussche and B. Goldys: Invariant measures of non symmetric dissipative stochastic systems. (to appear).

[11] G. Da Prato, D. Gątarek and J. Zabczyk: Invariant measures for semilinear stochastic equations. Stochastic Anal. Appl. 10 (1992), 387–408. | DOI | MR

[12] D. Gątarek and B. Goldys: On invariant measures for diffusions on Banach spaces. Potential Anal. 7 (1997), 539–553. | MR

[13] B. Goldys and B. Maslowski: Ergodic control of semilinear stochastic equations and the Hamilton-Jacobi equation. J. Math. Anal. Appl. 234 (1999), 592–631. | DOI | MR

[14] N. Jain and B. Jamison: Contributions to Doeblin’s theory of Markov processes. Z. Wahrscheinlichkeitstheorie und Verw. Geb. 8 (1967), 19–40. | MR

[15] S. Jacquot and G. Royer: Ergodicité d’une classe d’équations aux dérivées partielles stochastiques. C. R.  Acad. Sci. Paris Sér. I Math. 320 (1995), 231–236. | MR

[16] A. Lasota and M. C. Mackey: Chaos, Fractals and Noise. Springer-Verlag, New York, 1994. | MR

[17] B. Maslowski: Strong Feller property for semilinear stochastic evolution equations and applications. Stochastic Systems and Optimization (Warsaw, 1988). Lecture Notes in Control Inform. Sci. Vol. 136, Springer, Berlin, 1989, pp. 210–224. | MR | Zbl

[18] B. Maslowski: On ergodic behaviour of solutions to systems of stochastic reaction-diffusion equations with correlated noise. Stochastic Processes and Related Topics (Georgenthal, 1990), Akademie-Verlag, Berlin, 1991, pp. 93–102. | MR | Zbl

[19] B. Maslowski: On probability distributions of solutions of semilinear stochastic evolution equations. Stochastics Stochastics Rep. 45 (1993), 17–44. | DOI | MR | Zbl

[20] B. Maslowski and J. Seidler: Probabilistic approach to the strong Feller property. Probab. Theory Related Fields 118 (2000), 187–210. | DOI | MR

[21] B. Maslowski and J. Seidler: Invariant measures for nonlinear SPDE’s: Uniqueness and stability. Arch. Math. (Brno) 34 (1998), 153–172. | MR

[22] S. P. Meyn and R. L. Tweedie: Markov Chains and Stochastic Stability. Springer-Verlag, London, 1993. | MR

[23] S. Peszat and J. Seidler: Maximal inequalities and space-time regularity of stochastic convolutions. Math. Bohem. 123 (1998), 7–32. | MR

[24] G. O. Roberts and J. S. Rosenthal: Geometric ergodicity and hybrid Markov chains. Electron. Comm. Probab. 2 (1997), 13–25. | DOI | MR

[25] M. Röckner and T. S. Zhang: Probabilistic representations and hyperbound estimates for semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), 337–358. | MR

[26] J. Seidler: Ergodic behaviour of stochastic parabolic equations. Czechoslovak Math. J. 47 (122) (1997), 277–316. | DOI | MR | Zbl

[27] T. Shardlow: Geometric ergodicity for stochastic PDEs. Stochastic Anal.Appl. 17 (1999), 857–869. | DOI | MR | Zbl

[28] E. Sinestrari: Accretive differential operators. Boll. Un. Mat. Ital  B. (5) 13 (1976), 19–31. | MR | Zbl

[29] Wang Feng-Yu: Functional inequalities, semigroup properties and spectrum estimate. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), 263–295. | MR

[30] Wu Liming: Uniformly integrable operators and large deviations for Markov processes. J. Funct. Anal. 172 (2000), 301–376. | MR | Zbl