Keywords: dissipative system; compact semigroup; exponential ergodicity; spectral gap
@article{CMJ_2001_51_4_a6,
author = {Goldys, Beniamin and Maslowski, Bohdan},
title = {Uniform exponential ergodicity of stochastic dissipative systems},
journal = {Czechoslovak Mathematical Journal},
pages = {745--762},
year = {2001},
volume = {51},
number = {4},
mrnumber = {1864040},
zbl = {1001.60067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a6/}
}
Goldys, Beniamin; Maslowski, Bohdan. Uniform exponential ergodicity of stochastic dissipative systems. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 745-762. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a6/
[1] S. Aida: Uniform positivity improving property, Sobolev inequalities and spectral gaps. J. Funct. Anal. 158 (1998), 152–185. | MR | Zbl
[2] R. Arima: On general boundary value problem for parabolic equations. J. Math. Kyoto Univ. 4 (1964), 207–243. | DOI | MR | Zbl
[3] Mu-Fa Chen: Equivalence of exponential ergodicity and $L^2$-exponential convergence for Markov chains. Stochastic Process. Appl. 87 (2000), 281–297. | MR
[4] A. Chojnowska-Michalik and B. Goldys: Existence, uniqueness and invariant measures for stochastic semilinear equations in Hilbert spaces. Probab. Theory Related Fields 102 (1995), 331–356. | DOI | MR
[5] A. Chojnowska-Michalik and B. Goldys: Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator. J. Math. Kyoto Univ. 36 (1996), 481–498. | DOI | MR
[6] G. Da Prato: Large asymptotic behaviour of Kolmogorov equations in Hilbert spaces. Partial Differential Equations (Praha, 1998), Chapman & Hall/CRC, Boca Raton, 2000, pp. 111–120. | MR | Zbl
[7] G. Da Prato: Poincaré inequality for some measures in Hilbert spaces and application to spectral gap for transition semigroups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 25 (1997), 419–431. | MR | Zbl
[8] G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge, 1992. | MR
[9] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge, 1996. | MR
[10] G. Da Prato, A. Debussche and B. Goldys: Invariant measures of non symmetric dissipative stochastic systems. (to appear).
[11] G. Da Prato, D. Gątarek and J. Zabczyk: Invariant measures for semilinear stochastic equations. Stochastic Anal. Appl. 10 (1992), 387–408. | DOI | MR
[12] D. Gątarek and B. Goldys: On invariant measures for diffusions on Banach spaces. Potential Anal. 7 (1997), 539–553. | MR
[13] B. Goldys and B. Maslowski: Ergodic control of semilinear stochastic equations and the Hamilton-Jacobi equation. J. Math. Anal. Appl. 234 (1999), 592–631. | DOI | MR
[14] N. Jain and B. Jamison: Contributions to Doeblin’s theory of Markov processes. Z. Wahrscheinlichkeitstheorie und Verw. Geb. 8 (1967), 19–40. | MR
[15] S. Jacquot and G. Royer: Ergodicité d’une classe d’équations aux dérivées partielles stochastiques. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 231–236. | MR
[16] A. Lasota and M. C. Mackey: Chaos, Fractals and Noise. Springer-Verlag, New York, 1994. | MR
[17] B. Maslowski: Strong Feller property for semilinear stochastic evolution equations and applications. Stochastic Systems and Optimization (Warsaw, 1988). Lecture Notes in Control Inform. Sci. Vol. 136, Springer, Berlin, 1989, pp. 210–224. | MR | Zbl
[18] B. Maslowski: On ergodic behaviour of solutions to systems of stochastic reaction-diffusion equations with correlated noise. Stochastic Processes and Related Topics (Georgenthal, 1990), Akademie-Verlag, Berlin, 1991, pp. 93–102. | MR | Zbl
[19] B. Maslowski: On probability distributions of solutions of semilinear stochastic evolution equations. Stochastics Stochastics Rep. 45 (1993), 17–44. | DOI | MR | Zbl
[20] B. Maslowski and J. Seidler: Probabilistic approach to the strong Feller property. Probab. Theory Related Fields 118 (2000), 187–210. | DOI | MR
[21] B. Maslowski and J. Seidler: Invariant measures for nonlinear SPDE’s: Uniqueness and stability. Arch. Math. (Brno) 34 (1998), 153–172. | MR
[22] S. P. Meyn and R. L. Tweedie: Markov Chains and Stochastic Stability. Springer-Verlag, London, 1993. | MR
[23] S. Peszat and J. Seidler: Maximal inequalities and space-time regularity of stochastic convolutions. Math. Bohem. 123 (1998), 7–32. | MR
[24] G. O. Roberts and J. S. Rosenthal: Geometric ergodicity and hybrid Markov chains. Electron. Comm. Probab. 2 (1997), 13–25. | DOI | MR
[25] M. Röckner and T. S. Zhang: Probabilistic representations and hyperbound estimates for semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), 337–358. | MR
[26] J. Seidler: Ergodic behaviour of stochastic parabolic equations. Czechoslovak Math. J. 47 (122) (1997), 277–316. | DOI | MR | Zbl
[27] T. Shardlow: Geometric ergodicity for stochastic PDEs. Stochastic Anal.Appl. 17 (1999), 857–869. | DOI | MR | Zbl
[28] E. Sinestrari: Accretive differential operators. Boll. Un. Mat. Ital B. (5) 13 (1976), 19–31. | MR | Zbl
[29] Wang Feng-Yu: Functional inequalities, semigroup properties and spectrum estimate. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), 263–295. | MR
[30] Wu Liming: Uniformly integrable operators and large deviations for Markov processes. J. Funct. Anal. 172 (2000), 301–376. | MR | Zbl