Keywords: stochastic integration; fractional Brownian motion; $p$-variation; vortex filaments; statistical fluid mechanics
@article{CMJ_2001_51_4_a4,
author = {Flandoli, Franco and Minelli, Ida},
title = {Probabilistic models of vortex filaments},
journal = {Czechoslovak Mathematical Journal},
pages = {713--731},
year = {2001},
volume = {51},
number = {4},
mrnumber = {1864038},
zbl = {1001.60057},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a4/}
}
Flandoli, Franco; Minelli, Ida. Probabilistic models of vortex filaments. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 713-731. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a4/
[1] E. Alòs and D. Nualart: Stochastic calculus with respect to the fractional Brownian motion. Preprint.
[2] E. Alòs, O. Mazet and D. Nualart: Stochastic calculus with respect to Gaussian processes. (to appear). | MR
[3] J. Bell and D. Marcus: Vorticity intensification and the transition to turbulence in the three-dimensional Euler equation. Comm. Math. Phys. 147 (1992), 371–394. | DOI | MR
[4] J. Bertoin: Sur une integrale pour les processus à $\alpha $-variatione bornée. Ann. Probab. 17 (1989), 1521–1535. | DOI | MR
[5] H. Bessaih: Mean field theory for 3-D vortex filaments. In preparation.
[6] E. Bolthausen: On the construction of the three dimensional polymer measure. Probab. Theory Related Fields 97 (1993), 81–101. | DOI | MR | Zbl
[7] A. Chorin: Vorticity and Turbulence. Springer-Verlag, New York, 1994. | MR | Zbl
[8] A. Colesanti and M. Romito: Some remarks on a probabilistic model of the vorticity field of a 3D fluid. Preprint.
[9] F. Flandoli: On a probabilistic description of small scale structures in 3D fluids. (to appear). | MR | Zbl
[10] F. Flandoli and M. Gubinelli: The Gibbs ensamble of a vortex filament. (to appear). | MR
[11] U. Frisch: Turbulence. Cambridge University Press, Cambridge, 1995. | MR | Zbl
[12] G. Gallavotti: Foundations of Fluid Mechanics. Quaderni FM2000–5, http://ipparco.roma1.infn.it/
[13] A. N. Kolmogorov: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. C. R. (Dokl.) Acad. Sci. USSR (N.S.) 30 (1941), 299–303. | MR
[14] N. S. Landkof: Foundations of Modern Potential Theory. Springer-Verlag, New York, 1972. | MR | Zbl
[15] P. L. Lions and A. Majda: Equilibrium statistical theory for nearly parallel vortex filaments. Comm. Pure Appl. Math. 53 (2000), 76–142. | DOI | MR
[16] C. Marchioro, M. Pulvirenti: Mathematical Theory of Incompressible Nonviscous Fluids. Springer-Verlag, Berlin, 1994. | MR
[17] I. Minelli: In preparation.
[18] D. Nualart, C. Rovira and S. Tindel: Probabilistic models for vortex filaments based on fractional Brownian motion. In preparation.
[19] L. Onsager: Statistical hydrodynamics. Nuovo Cimento (9) 6 (1949), Supplemento no. 2, 279–287. | DOI | MR
[20] Z. S. She, E. Jackson and S. A. Orszag: Structure and dynamics of homogeneous turbulence: models and simulations. Proc. Roy. Soc. Lond. Ser. A 434 (1991), 101–124. | DOI
[21] B. Toth and W. Werner: The true self-repelling motion. Probab. Theory Relat. Fields 111 (1998), 375–452. | DOI | MR
[22] A. Vincent and M. Meneguzzi: The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225 (1991), 1–25. | DOI
[23] J. Westwater: On Edwards model for long polymer chains. Comm. Math. Phys. 72 (1980), 131–174. | DOI | MR | Zbl
[24] L. C. Young: An inequality of Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936), 251–282. | DOI | MR
[25] M. Zähle: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 (1998), 333–374. | DOI | MR