Keywords: one-dimensional stochastic equations; time-dependent diffusion coefficients; Brownian motion; existence of solutions; uniqueness in law; continuous local martingales; representation property
@article{CMJ_2001_51_4_a3,
author = {Engelbert, Hans-J\"urgen},
title = {A note on one-dimensional stochastic equations},
journal = {Czechoslovak Mathematical Journal},
pages = {701--712},
year = {2001},
volume = {51},
number = {4},
mrnumber = {1864037},
zbl = {1001.60059},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a3/}
}
Engelbert, Hans-Jürgen. A note on one-dimensional stochastic equations. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 701-712. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a3/
[1] S. Assing and T. Senf: On stochastic differential equations without drift. Stochastics Stochastics Rep. 36 (1991), 21–39. | DOI | MR
[2] H. J. Engelbert: On the theorem of T. Yamada and S. Watanabe. Stochastics Stochastics Rep. 36 (1991), 205–216. | DOI | MR | Zbl
[3] H. J. Engelbert and J. Hess: Stochastic integrals of continuous local martingales, II. Math. Nachr. 100 (1981), 249–269. | DOI | MR
[4] H. J. Engelbert and V. P. Kurenok: On one-dimensional stochastic equations driven by symmetric stable processes. Stochastic Processes and Related Topics, Proceedings of the 12th Winter School on Stochastic Processes, Siegmundsburg (Germany), February 27–March 4, 2000, R. Buckdahn, H.-J. Engelbert and M. Yor (eds.), Gordon and Breach Science Publishers, 2001, to appear. | MR
[5] H. J. Engelbert and V. P. Kurenok: On one-dimensional stochastic equations driven by symmetric stable processes. Jenaer Schriften zur Mathematik und Informatik, Preprint Mat/Inf/00/14 (24.01.2000). | MR
[6] H. J. Engelbert and W. Schmidt: On the behaviour of certain functionals of the Wiener process and applications to stochastic differential equations. Stochastic differential systems (Visegrad, 1980). Lecture Notes in Control and Information Sci. Vol. 36, Springer, Berlin-New York, 1981, pp. 47–55. | MR
[7] H. J. Engelbert and W. Schmidt: On one-dimensional stochastic differential equations with generalized drift. Stochastic differential systems (Marseille-Luminy, 1984). Lecture Notes in Control and Information Sci. Vol. 69, Springer, Berlin-New York, 1985, pp. 143–155. | MR
[8] H. J. Engelbert and W. Schmidt: On solutions of one-dimensional stochastic differential equations without drift. Z. Wahrsch. Verw. Gebiete 68 (1985), 287–314. | DOI | MR
[9] H. J. Engelbert and W. Schmidt: Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations, III. Math. Nachr. 151 (1991), 149–197. | DOI | MR
[10] A. F. Fillippov: Differential Equations with Discontinuous Right Hand Sides. Nauka, Moscow, 1985. (Russian)
[11] J. Jacod: Calcul stochastique et problèmes de martingales. Lecture Notes in Math. Vol. 714, Springer, Berlin, 1979. | MR | Zbl
[12] P. Raupach: On driftless one-dimensional SDEs with time-dependent diffusion coefficients. Stochastics Stochastics Rep. 67 (1999), 207–230. | DOI | MR | Zbl
[13] D. Revuz, M. Yor: Continuous Martingales and Brownian Motion. Springer-Verlag, Berlin, 1994. | MR
[14] T. Senf: Stochastische Differentialgleichungen mit inhomogenen Koeffizienten. Dissertation, Friedrich-Schiller-Universität Jena. (1992).
[15] T. Senf: On one-dimensional stochastic differential equations without drift and with time-dependent diffusion coefficients. Stochastics Stochastics Rep. 43 (1993), 199–220. | MR | Zbl
[16] T. Yamada and S. Watanabe: On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 (1971), 155–167. | DOI | MR