Some results about dissipativity of Kolmogorov operators
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 685-699 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.
Given a Hilbert space $H$ with a Borel probability measure $\nu $, we prove the $m$-dissipativity in $L^1(H, \nu )$ of a Kolmogorov operator $K$ that is a perturbation, not necessarily of gradient type, of an Ornstein-Uhlenbeck operator.
Classification : 35K57, 37L40, 47B25, 47N50, 70H15, 81S20
Keywords: Kolmogorov equations; invatiant measures; $m$-dissipativity
@article{CMJ_2001_51_4_a2,
     author = {Prato, Giuseppe Da and Tubaro, Luciano},
     title = {Some results about dissipativity of {Kolmogorov} operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {685--699},
     year = {2001},
     volume = {51},
     number = {4},
     mrnumber = {1864036},
     zbl = {0996.47028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a2/}
}
TY  - JOUR
AU  - Prato, Giuseppe Da
AU  - Tubaro, Luciano
TI  - Some results about dissipativity of Kolmogorov operators
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 685
EP  - 699
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a2/
LA  - en
ID  - CMJ_2001_51_4_a2
ER  - 
%0 Journal Article
%A Prato, Giuseppe Da
%A Tubaro, Luciano
%T Some results about dissipativity of Kolmogorov operators
%J Czechoslovak Mathematical Journal
%D 2001
%P 685-699
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a2/
%G en
%F CMJ_2001_51_4_a2
Prato, Giuseppe Da; Tubaro, Luciano. Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 685-699. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a2/

[1] S.  Cerrai: A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49 (1994), 349–367. | DOI | MR | Zbl

[2] S. Cerrai: Weakly continuous semigroups in the space of functions with polynomial growth. Dynam. Systems Appl. 4 (1995), 351–371. | MR | Zbl

[3] S.  Cerrai and F. Gozzi: Strong solutions of Cauchy problems associated to weakly continuous semigroups. Differential Integral Equations (1995), 465–486. | MR

[4] G. Da Prato and L. Tubaro: Self-adjointness of some infinite dimensional elliptic operators and application to stochastic quantization. Probab. Theory Relat. Fields 118 (2000), 131–145. | DOI | MR

[5] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge, 1996. | MR

[6] A. Eberle: Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators. Lecture Notes in Mathematics Vol. 1718. Springer-Verlag, Berlin, 1999. | MR

[7] B.  Goldys and M. Kocan: Diffusion semigroups in spaces of continuous functions with mixed topology. J. Differential Equations 173 (2001), 17–39. | DOI | MR

[8] V. Liskevich and M. Röckner: Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization. Ann. Scuola Norm. Sup. Pisa Cl. Sci.  (4) 27 (1999), 69–91. | MR

[9] Z. M. Ma and M. Röckner: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer-Verlag, Berlin, 1992. | MR

[10] E.  Priola: $\pi $-semigroups and applications. Preprint No.  9 of the Scuola Normale Superiore di Pisa. 1998.