Keywords: Kolmogorov equations; invatiant measures; $m$-dissipativity
@article{CMJ_2001_51_4_a2,
author = {Prato, Giuseppe Da and Tubaro, Luciano},
title = {Some results about dissipativity of {Kolmogorov} operators},
journal = {Czechoslovak Mathematical Journal},
pages = {685--699},
year = {2001},
volume = {51},
number = {4},
mrnumber = {1864036},
zbl = {0996.47028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a2/}
}
Prato, Giuseppe Da; Tubaro, Luciano. Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 685-699. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a2/
[1] S. Cerrai: A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum 49 (1994), 349–367. | DOI | MR | Zbl
[2] S. Cerrai: Weakly continuous semigroups in the space of functions with polynomial growth. Dynam. Systems Appl. 4 (1995), 351–371. | MR | Zbl
[3] S. Cerrai and F. Gozzi: Strong solutions of Cauchy problems associated to weakly continuous semigroups. Differential Integral Equations (1995), 465–486. | MR
[4] G. Da Prato and L. Tubaro: Self-adjointness of some infinite dimensional elliptic operators and application to stochastic quantization. Probab. Theory Relat. Fields 118 (2000), 131–145. | DOI | MR
[5] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge, 1996. | MR
[6] A. Eberle: Uniqueness and Non-uniqueness of Semigroups Generated by Singular Diffusion Operators. Lecture Notes in Mathematics Vol. 1718. Springer-Verlag, Berlin, 1999. | MR
[7] B. Goldys and M. Kocan: Diffusion semigroups in spaces of continuous functions with mixed topology. J. Differential Equations 173 (2001), 17–39. | DOI | MR
[8] V. Liskevich and M. Röckner: Strong uniqueness for certain infinite-dimensional Dirichlet operators and applications to stochastic quantization. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1999), 69–91. | MR
[9] Z. M. Ma and M. Röckner: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer-Verlag, Berlin, 1992. | MR
[10] E. Priola: $\pi $-semigroups and applications. Preprint No. 9 of the Scuola Normale Superiore di Pisa. 1998.