Second centralizers of partial transformations
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 873-888 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Second centralizers of partial transformations on a finite set are determined. In particular, it is shown that the second centralizer of any partial transformation $\alpha $ consists of partial transformations that are locally powers of $\alpha $.
Second centralizers of partial transformations on a finite set are determined. In particular, it is shown that the second centralizer of any partial transformation $\alpha $ consists of partial transformations that are locally powers of $\alpha $.
Classification : 20M20
Keywords: partial transformation; second centralizer
@article{CMJ_2001_51_4_a14,
     author = {Konieczny, Janusz},
     title = {Second centralizers of partial transformations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {873--888},
     year = {2001},
     volume = {51},
     number = {4},
     mrnumber = {1864048},
     zbl = {1003.20053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a14/}
}
TY  - JOUR
AU  - Konieczny, Janusz
TI  - Second centralizers of partial transformations
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 873
EP  - 888
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a14/
LA  - en
ID  - CMJ_2001_51_4_a14
ER  - 
%0 Journal Article
%A Konieczny, Janusz
%T Second centralizers of partial transformations
%J Czechoslovak Mathematical Journal
%D 2001
%P 873-888
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a14/
%G en
%F CMJ_2001_51_4_a14
Konieczny, Janusz. Second centralizers of partial transformations. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 873-888. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a14/

[1] P. M. Higgins: Techniques of Semigroup Theory. Oxford University Press, New York, 1992. | MR | Zbl

[2] P. M. Higgins: Digraphs and the semigroup of all functions on a finite set. Glasgow Math.  J. 30 (1988), 41–57. | DOI | MR | Zbl

[3] J. Konieczny: Green’s relations and regularity in centralizers of permutations. Glasgow Math. J. 41 (1999), 45–57. | DOI | MR | Zbl

[4] J. Konieczny and S. Lipscomb: Centralizers in the semigroup of partial transformations. Math.  Japon. 48 (1998), 367–376. | MR

[5] S. Lipscomb: Symmetric Inverse Semigroups. Mathematical Surveys and Monographs, Vol.  46, American Mathematical Society, Providence, RI, 1996. | MR | Zbl

[6] S. Lipscomb and J. Konieczny: Centralizers of permutations in the partial transformation semigroup. Pure Math. Appl. 6 (1995), 349–354. | MR

[7] V. A. Liskovec and V. Z. Feĭnberg: On the permutability of mappings. Dokl. Akad. Nauk Belarusi 7 (1963), 366–369. (Russian) | MR