Keywords: multiresolution analysis; Radon measures; topological groups
@article{CMJ_2001_51_4_a13,
author = {Galindo, F\'elix and Sanz, Javier},
title = {Multiresolution analysis and {Radon} measures on a locally compact {Abelian} group},
journal = {Czechoslovak Mathematical Journal},
pages = {859--871},
year = {2001},
volume = {51},
number = {4},
mrnumber = {1864047},
zbl = {0997.43003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a13/}
}
TY - JOUR AU - Galindo, Félix AU - Sanz, Javier TI - Multiresolution analysis and Radon measures on a locally compact Abelian group JO - Czechoslovak Mathematical Journal PY - 2001 SP - 859 EP - 871 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a13/ LA - en ID - CMJ_2001_51_4_a13 ER -
Galindo, Félix; Sanz, Javier. Multiresolution analysis and Radon measures on a locally compact Abelian group. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 859-871. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a13/
[1] J. Diestel and J. J. Uhl, Jr.: Vector Measures. Mathematical Surveys, Number 15, AMS. Providence, Rhode Island, 1977. | MR
[2] N. Dunford and J. T. Schwartz: Linear Operators. Part I: General Theory. Wiley Interscience, New York, 1988. | MR
[3] R. E. Edwards and G. I. Gaudry: Littlewood-Paley and Multiplier Theory. Springer-Verlag, Berlin, 1977. | MR
[4] F. Galindo: Procesos semiperiódicos multidimensionales. Multiplicadores y funciones de transferencia. Ph.D. Thesis, Universidad de Valladolid, Valladolid, 1995.
[5] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis I. Springer-Verlag, Berlin, 1963.
[6] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis II. Springer-Verlag, Berlin, 1970. | MR
[7] W. C. Lang: Orthogonal wavelets on the Cantor dyadic group. SIAM J. Math. Anal. 27 (1996), 305–312. | DOI | MR | Zbl
[8] R. Larsen: An Introduction to the Theory of Multipliers. Springer-Verlag, Berlin, 1971. | MR | Zbl
[9] P. G. Lemarié: Base d’ondelettes sur les groupes de Lie stratifiés. Bull. Soc. Math. France 117 (1989), 211–232. | DOI | MR
[10] S. G. Mallat: Multiresolution approximations and wavelet orthonormal bases of $L^2(\mathbb{R})$. Trans. Amer. Math. Soc. 315 (1989), 69–87. | MR | Zbl
[11] Y. Meyer: Wavelets and operators. Cambridge University Press, Cambridge, 1992. | MR | Zbl
[12] M. Núñez: Multipliers on the space of semiperiodic sequences. Trans. Amer. Math. Soc. 291 (1984), 801–811. | MR
[13] G. E. Shilov and B. L. Gurevich: Integral, Measure and Derivative: a unified approach. Dover, New York, 1977. | MR