On the strong McShane integral of functions with values in a Banach space
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 819-828 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The classical Bochner integral is compared with the McShane concept of integration based on Riemann type integral sums. It turns out that the Bochner integrable functions form a proper subclass of the set of functions which are McShane integrable provided the Banach space to which the values of functions belong is infinite-dimensional. The Bochner integrable functions are characterized by using gauge techniques. The situation is different in the case of finite-dimensional valued vector functions.
The classical Bochner integral is compared with the McShane concept of integration based on Riemann type integral sums. It turns out that the Bochner integrable functions form a proper subclass of the set of functions which are McShane integrable provided the Banach space to which the values of functions belong is infinite-dimensional. The Bochner integrable functions are characterized by using gauge techniques. The situation is different in the case of finite-dimensional valued vector functions.
Classification : 26A39, 28-02, 28B05, 46G10
Keywords: Bochner integral; strong McShane integral
@article{CMJ_2001_51_4_a10,
     author = {Schwabik, \v{S}tefan and Guoju, Ye},
     title = {On the strong {McShane} integral of functions with values in a {Banach} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {819--828},
     year = {2001},
     volume = {51},
     number = {4},
     mrnumber = {1864044},
     zbl = {1002.28013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a10/}
}
TY  - JOUR
AU  - Schwabik, Štefan
AU  - Guoju, Ye
TI  - On the strong McShane integral of functions with values in a Banach space
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 819
EP  - 828
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a10/
LA  - en
ID  - CMJ_2001_51_4_a10
ER  - 
%0 Journal Article
%A Schwabik, Štefan
%A Guoju, Ye
%T On the strong McShane integral of functions with values in a Banach space
%J Czechoslovak Mathematical Journal
%D 2001
%P 819-828
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a10/
%G en
%F CMJ_2001_51_4_a10
Schwabik, Štefan; Guoju, Ye. On the strong McShane integral of functions with values in a Banach space. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 819-828. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a10/

[1] A. Dvoretzky and C. A.  Rogers: Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. USA 36 (1950), 192–197. | DOI | MR

[2] R. Gordon: The McShane integral of Banach-valued functions. Illinois J.  Math. 34 (1990), 557–567. | DOI | MR | Zbl

[3] R. Gordon: Riemann integration in Banach spaces. Rocky Mountain J.  Math. 21 (1991), 923–949. | DOI | MR | Zbl

[4] R. Henstock: Lectures on the Theory of Integration. World Scientific, Singapore, 1988. | MR | Zbl

[5] J. Kurzweil: Nichtabsolut Konvergente Integrale. BSB B. G.  Teubner Verlagsgesellschaft, Leipzig, 1980. | MR | Zbl

[6] S. Lang: Real and Functional Analysis. Springer-Verlag, New York, 1993. | MR | Zbl

[7] Š. Schwabik: Abstract Bochner and McShane integrals. Ann. Math. Sil. 10 (1996), 21–56. | MR | Zbl

[8] V. A. Skvortsov and A. P. Solodov: A variational integral for Banach-valued functions. Real Anal. Exchange 24 (1998/99), 799–806. | MR

[9] P.-Y. Lee: Lanzhou Lectures on Henstock Integration. World Scientific, Singapore, 1989. | MR | Zbl