Keywords: stochastic convolutions; continuity of Gaussian processes; Gaussian trigonometric series
@article{CMJ_2001_51_4_a1,
author = {Brze\'zniak, Zdzis{\l}aw and Peszat, Szymon and Zabczyk, Jerzy},
title = {Continuity of stochastic convolutions},
journal = {Czechoslovak Mathematical Journal},
pages = {679--684},
year = {2001},
volume = {51},
number = {4},
mrnumber = {1864035},
zbl = {1001.60056},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a1/}
}
Brzeźniak, Zdzisław; Peszat, Szymon; Zabczyk, Jerzy. Continuity of stochastic convolutions. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 679-684. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a1/
[1] T. Bjork, Y. Kabanov and W. Runggaldier: Bond market structure in the presence of marked point processes. Math. Finance 7 (1997), 211–239. | DOI | MR
[2] K. De Leeuw, J.-P. Kahane and Y. Katznelson: Sur les coefficients de Fourier des fonctions continues. C. R. Acad. Sci. Paris Sér. A-B 285 (1977), A1001–A1003. | MR
[3] M. Errami and F. Russo: Covariation de convolution de martingales. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 601–606. | DOI | MR
[4] B. Goldys and M. Musiela: On Stochastic Convolutions. Report S98–19, School of Mathematics, University of New South Wales, Sydney, 1998.
[5] D. Heath, A. Jarrow and A. Morton: Bond pricing and the term structure of interest rates: A new methodology for contingent claim valuation. Econometrica 60 (1992), 77–105. | DOI
[6] J.-P. Kahane: Some Random Series of Functions. 2nd ed., Cambridge University Press, Cambridge, 1985. | MR | Zbl
[7] J.-P. Kahane: Baire’s category theorem and trigonometric series. J. Anal. Math. 80 (2000), 143–182. | DOI | MR | Zbl
[8] M. Musiela: Stochastic PDEs and term structure models. Journees Internationales des Finance, IGR-AFFI, La Boule, 1993.
[9] G. Pisier: A remarkable homogeneous Banach algebra. Israel J. Math. 34 (1979), 38–44. | DOI | MR | Zbl