Continuity of stochastic convolutions
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 679-684 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $B$ be a Brownian motion, and let $\mathcal C_{\mathrm p}$ be the space of all continuous periodic functions $f\:\mathbb{R}\rightarrow \mathbb{R}$ with period 1. It is shown that the set of all $f\in \mathcal C_{\mathrm p}$ such that the stochastic convolution $X_{f,B}(t)= \int _0^tf(t-s)\mathrm{d}B(s)$, $t\in [0,1]$ does not have a modification with bounded trajectories, and consequently does not have a continuous modification, is of the second Baire category.
Let $B$ be a Brownian motion, and let $\mathcal C_{\mathrm p}$ be the space of all continuous periodic functions $f\:\mathbb{R}\rightarrow \mathbb{R}$ with period 1. It is shown that the set of all $f\in \mathcal C_{\mathrm p}$ such that the stochastic convolution $X_{f,B}(t)= \int _0^tf(t-s)\mathrm{d}B(s)$, $t\in [0,1]$ does not have a modification with bounded trajectories, and consequently does not have a continuous modification, is of the second Baire category.
Classification : 60G15, 60G17, 60G50, 60H05
Keywords: stochastic convolutions; continuity of Gaussian processes; Gaussian trigonometric series
@article{CMJ_2001_51_4_a1,
     author = {Brze\'zniak, Zdzis{\l}aw and Peszat, Szymon and Zabczyk, Jerzy},
     title = {Continuity of stochastic convolutions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {679--684},
     year = {2001},
     volume = {51},
     number = {4},
     mrnumber = {1864035},
     zbl = {1001.60056},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a1/}
}
TY  - JOUR
AU  - Brzeźniak, Zdzisław
AU  - Peszat, Szymon
AU  - Zabczyk, Jerzy
TI  - Continuity of stochastic convolutions
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 679
EP  - 684
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a1/
LA  - en
ID  - CMJ_2001_51_4_a1
ER  - 
%0 Journal Article
%A Brzeźniak, Zdzisław
%A Peszat, Szymon
%A Zabczyk, Jerzy
%T Continuity of stochastic convolutions
%J Czechoslovak Mathematical Journal
%D 2001
%P 679-684
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a1/
%G en
%F CMJ_2001_51_4_a1
Brzeźniak, Zdzisław; Peszat, Szymon; Zabczyk, Jerzy. Continuity of stochastic convolutions. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 4, pp. 679-684. http://geodesic.mathdoc.fr/item/CMJ_2001_51_4_a1/

[1] T. Bjork, Y. Kabanov and W.  Runggaldier: Bond market structure in the presence of marked point processes. Math. Finance 7 (1997), 211–239. | DOI | MR

[2] K. De  Leeuw, J.-P.  Kahane and Y.  Katznelson: Sur les coefficients de Fourier des fonctions continues. C. R.  Acad. Sci. Paris Sér. A-B 285 (1977), A1001–A1003. | MR

[3] M.  Errami and F.  Russo: Covariation de convolution de martingales. C.  R.  Acad. Sci. Paris Sér. I Math. 326 (1998), 601–606. | DOI | MR

[4] B.  Goldys and M.  Musiela: On Stochastic Convolutions. Report S98–19, School of Mathematics, University of New South Wales, Sydney, 1998.

[5] D.  Heath, A.  Jarrow and A.  Morton: Bond pricing and the term structure of interest rates: A new methodology for contingent claim valuation. Econometrica 60 (1992), 77–105. | DOI

[6] J.-P.  Kahane: Some Random Series of Functions. 2nd ed., Cambridge University Press, Cambridge, 1985. | MR | Zbl

[7] J.-P.  Kahane: Baire’s category theorem and trigonometric series. J.  Anal. Math. 80 (2000), 143–182. | DOI | MR | Zbl

[8] M.  Musiela: Stochastic PDEs and term structure models. Journees Internationales des Finance, IGR-AFFI, La Boule, 1993.

[9] G.  Pisier: A remarkable homogeneous Banach algebra. Israel J.  Math. 34 (1979), 38–44. | DOI | MR | Zbl