Existence of positive solutions for a class of higher order neutral functional differential equations
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 573-583 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The higher order neutral functional differential equation \[ \frac{\mathrm{d}^n}{\mathrm{d}t^n} \bigl [x(t) + h(t) x(\tau (t))\bigr ] + \sigma f\bigl (t,x(g(t))\bigr ) = 0 \qquad \mathrm{(1)}\] is considered under the following conditions: $n\ge 2$, $\sigma =\pm 1$, $\tau (t)$ is strictly increasing in $t\in [t_0,\infty )$, $\tau (t)
The higher order neutral functional differential equation \[ \frac{\mathrm{d}^n}{\mathrm{d}t^n} \bigl [x(t) + h(t) x(\tau (t))\bigr ] + \sigma f\bigl (t,x(g(t))\bigr ) = 0 \qquad \mathrm{(1)}\] is considered under the following conditions: $n\ge 2$, $\sigma =\pm 1$, $\tau (t)$ is strictly increasing in $t\in [t_0,\infty )$, $\tau (t)$ for $t\ge t_0$, $\lim _{t\rightarrow \infty } \tau (t)= \infty $, $\lim _{t\rightarrow \infty } g(t) = \infty $, and $f(t,u)$ is nonnegative on $[t_0,\infty )\times (0,\infty )$ and nondecreasing in $u \in (0,\infty )$. A necessary and sufficient condition is derived for the existence of certain positive solutions of (1).
Classification : 34K11, 34K40
Keywords: neutral differential equation; positive solution
@article{CMJ_2001_51_3_a9,
     author = {Tanaka, Satoshi},
     title = {Existence of positive solutions for a class of higher order neutral functional differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {573--583},
     year = {2001},
     volume = {51},
     number = {3},
     mrnumber = {1851548},
     zbl = {1079.34538},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a9/}
}
TY  - JOUR
AU  - Tanaka, Satoshi
TI  - Existence of positive solutions for a class of higher order neutral functional differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 573
EP  - 583
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a9/
LA  - en
ID  - CMJ_2001_51_3_a9
ER  - 
%0 Journal Article
%A Tanaka, Satoshi
%T Existence of positive solutions for a class of higher order neutral functional differential equations
%J Czechoslovak Mathematical Journal
%D 2001
%P 573-583
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a9/
%G en
%F CMJ_2001_51_3_a9
Tanaka, Satoshi. Existence of positive solutions for a class of higher order neutral functional differential equations. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 573-583. http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a9/

[1] S. J.  Bilchev, M. K.  Grammatikopoulos and I. P.  Stavroulakis: Oscillations of higher order neutral differential equations. J.  Austral. Math. Soc. Ser.  A 52 (1992), 261–284. | DOI | MR

[2] Y. Chen: Existence of nonoscillatory solutions of $n$th order neutral delay differential equations. Funkcial. Ekvac. 35 (1992), 557–570. | MR | Zbl

[3] L. H.  Erbe and J. S.  Yu: Linearized oscillations for neutral equations I: Odd order. Hiroshima Math.  J. 26 (1996), 557–572. | DOI | MR

[4] L. H.  Erbe and J. S.  Yu: Linearized oscillations for neutral equations II: Even order. Hiroshima Math.  J. 26 (1996), 573–585. | DOI | MR

[5] K. Gopalsamy: Oscillation and nonoscillation in neutral differential equations with variable parameters. J.  Math. Phys. Sci. 21 (1987), 593–611. | MR | Zbl

[6] K. Gopalsamy, B. S.  Lalli and B. G.  Zhang: Oscillation of odd order neutral differential equations. Czechoslovak Math.  J. 42 (1992), 313–323. | MR

[7] J. Jaroš and T. Kusano: Oscillation theory of higher order linear functional differential equations of neutral type. Hiroshima Math.  J. 18 (1988), 509–531. | DOI | MR

[8] J. Jaroš and T. Kusano: Asymptotic behavior of nonoscillatory solutions of nonlinear functional differential equations of neutral type. Funkcial. Ekvac. 32 (1989), 251–263. | MR

[9] Y. Kitamura and T. Kusano: Existence theorems for a neutral functional differential equation whose leading part contains a difference operator of higher degree. Hiroshima Math.  J. 25 (1995), 53–82. | DOI | MR

[10] W. D.  Lu: Existence and asymptotic behavior of nonoscillatory solutions to nonlinear second-order equations of neutral type. Acta Math. Sinica 36 (1993), 476–484. (Chinese) | MR

[11] M. Naito: An asymptotic theorem for a class of nonlinear neutral differential equations. Czechoslovak Math.  J 48(123) (1998), 419–432. | DOI | MR | Zbl

[12] Y. Naito: Nonoscillatory solutions of neutral differential equations. Hiroshima Math.  J. 20 (1990), 231–258. | DOI | MR | Zbl

[13] Y. Naito: Asymptotic behavior of decaying nonoscillatory solutions of neutral differential equations. Funkcial. Ekvac. 35 (1992), 95–110. | MR | Zbl

[14] Y. Naito: Existence and asymptotic behavior of positive solutions of neutral differential equations. J.  Math. Anal. Appl. 188 (1994), 227–244. | DOI | MR | Zbl

[15] Y. Naito: A note on the existence of nonoscillatory solutions of neutral differential equations. Hiroshima Math.  J. 25 (1995), 513–518. | DOI | MR | Zbl

[16] J. Ruan: Type and criteria of nonoscillatory solutions for second order linear neutral differential equations. Chinese Ann. Math. Ser.  A 8 (1987), 114–124. (Chinese) | MR

[17] S. Tanaka: Existence and asymptotic behavior of solutions of nonlinear neutral differential equations. In preparation.

[18] S. Tanaka: Existence of positive solutions for a class of first-order neutral functional differential equations. J.  Math. Anal. Appl. 229 (1999), 501–518. | DOI | MR | Zbl

[19] X. H.  Tang and J. H.  Shen: Oscillation and existence of positive solutions in a class of higher order neutral equations. J.  Math. Anal. Appl. 213 (1997), 662–680. | DOI | MR

[20] B. G.  Zhang and J. S.  Yu: On the existence of asymptotically decaying positive solutions of second order neutral differential equations. J.  Math. Anal. Appl. 166 (1992), 1–11. | DOI | MR

[21] B. G.  Zhang, J. S.  Yu and Z. C.  Wang: Oscillations of higher order neutral differential equations. Rocky Mountain J. Math. 25 (1995), 557–568. | DOI | MR