Keywords: elliptic operators; eigenfunctions; Fourier series; hyperbolic equation
@article{CMJ_2001_51_3_a8,
author = {Pustylnik, Evgeniy},
title = {A way of estimating the convergence rate of the {Fourier} method for {PDE} of hyperbolic type},
journal = {Czechoslovak Mathematical Journal},
pages = {561--572},
year = {2001},
volume = {51},
number = {3},
mrnumber = {1851547},
zbl = {1079.35527},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a8/}
}
TY - JOUR AU - Pustylnik, Evgeniy TI - A way of estimating the convergence rate of the Fourier method for PDE of hyperbolic type JO - Czechoslovak Mathematical Journal PY - 2001 SP - 561 EP - 572 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a8/ LA - en ID - CMJ_2001_51_3_a8 ER -
Pustylnik, Evgeniy. A way of estimating the convergence rate of the Fourier method for PDE of hyperbolic type. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 561-572. http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a8/
[1] E. I. Pustylnik: On functions of a positive operator. Mat. Sbornik 119 (1982), 32–37. (Russian) | MR
[2] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik and P. E. Sobolevskii: Integral Operators in Spaces of Summable Functions. Izd. Nauka, Moscow, 1966, English transl. Noordhoff, Leyden, 1976.
[3] E. I. Pustylnik: On optimal interpolation and some interpolation properties of Orlicz spaces. Dokl. Akad. Nauk SSSR 269 (1983), 292–295. (Russian) | MR
[4] C. Miranda: Partial Differential Equations of Elliptic Type. Springer-Verlag, Berlin, 1970. | MR | Zbl
[5] E. Pustylnik: Functions of a second order elliptic operator in rearrangement invariant spaces. Integral Equations Operator Theory 22 (1995), 476–498. | DOI | MR | Zbl
[6] C. Bennett, R. Sharpley: Interpolation of Operators. Academic Press, Boston, 1988. | MR
[7] E. Pustylnik: Generalized potential type operators on rearrangement invariant spaces. Israel Math. Conf. Proc. 13 (1999), 161–171. | MR | Zbl
[8] J. Peetre: Espaces d’interpolation et théorème de Soboleff. Ann. Inst. Fourier 16 (1966), 279–317. | DOI | MR | Zbl