Keywords: unit tangent sphere bundles; constant scalar curvature; Einstein and Ricci-parallel metrics
@article{CMJ_2001_51_3_a6,
author = {Boeckx, E. and Vanhecke, L.},
title = {Unit tangent sphere bundles with constant scalar curvature},
journal = {Czechoslovak Mathematical Journal},
pages = {523--544},
year = {2001},
volume = {51},
number = {3},
mrnumber = {1851545},
zbl = {1079.53063},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a6/}
}
Boeckx, E.; Vanhecke, L. Unit tangent sphere bundles with constant scalar curvature. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 523-544. http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a6/
[1] J. Berndt, F. Tricerri and L. Vanhecke: Generalized Heisenberg groups and Damek-Ricci harmonic spaces. Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New York, 1995. | MR
[2] A. L. Besse: Manifolds all of whose geodesics are closed. Ergeb. Math. Grenzgeb. 93, Springer-Verlag, Berlin, Heidelberg, New York, 1978. | MR | Zbl
[3] A. L. Besse: Einstein manifolds. Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. | MR | Zbl
[4] D. E. Blair: Contact manifolds in Riemannian geometry. Lecture Notes in Math. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976. | MR | Zbl
[5] D. E. Blair: When is the tangent sphere bundle locally symmetric? Geometry and Topology. World Scientific, Singapore, 1989, pp. 15–30. | MR
[6] D. E. Blair and T. Koufogiorgos: When is the tangent sphere bundle conformally flat? J. Geom. 49 (1994), 55–66. | DOI | MR
[7] E. Boeckx, O. Kowalski and L. Vanhecke: Riemannian manifolds of conullity two. World Scientific, Singapore, 1996. | MR
[8] E. Boeckx and L. Vanhecke: Characteristic reflections on unit tangent sphere bundles. Houston J. Math. 23 (1997), 427–448. | MR
[9] E. Boeckx and L. Vanhecke: Curvature homogeneous unit tangent sphere bundles. Publ. Math. Debrecen 53 (1998), 389–413. | MR
[10] P. Bueken: Three-dimensional Riemannian manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. J. Math. Phys. 37 (1996), 4062–4075. | MR
[11] B.-Y. Chen and L. Vanhecke: Differential geometry of geodesic spheres. J. Reine Angew. Math. 325 (1981), 28–67. | MR
[12] P. Gilkey, A. Swann and L. Vanhecke: Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator. Quart. J. Math. Oxford 46 (1995), 299–320. | DOI | MR
[13] A. Gray: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259–280. | DOI | MR | Zbl
[14] A. Gray and L. Vanhecke: Riemannian geometry as determined by the volumes of small geodesic balls. Acta Math. 142 (1979), 157–198. | DOI | MR
[15] A. Gray and T. J. Willmore: Mean-value theorems for Riemannian manifolds. Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), 343–364. | DOI | MR
[16] S. Ivanov and I. Petrova: Riemannian manifolds in which certain curvature operator has constant eigenvalues along each circle. Ann. Global Anal. Geom. 15 (1997), 157–171. | DOI | MR
[17] O. Kowalski: A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolin. 30 (1989), 85–88. | MR | Zbl
[18] O. Kowalski: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. Nagoya Math. J. 132 (1993), 1–36. | DOI | MR
[19] O. Kowalski: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czechoslovak Math. J. 46 (1996), 427–474. | MR | Zbl
[20] J. W. Milnor: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293–329. | DOI | MR | Zbl
[21] E. Musso and F. Tricerri: Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl. 150 (1988), 1–20. | DOI | MR
[22] K. Sekigawa and L. Vanhecke: Volume preserving geodesic symmetries on four-dimensional Kähler manifolds. Differential Geometry Peñiscola, 1985, Proceedings, A. M. Naveira, A. Ferrández and F. Mascaró (eds.), Lecture Notes in Math. 1209, Springer, pp. 275–290. | MR
[23] I. M. Singer: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685–697. | DOI | MR | Zbl
[24] I. M. Singer and J. A. Thorpe: The curvature of 4-dimensional Einstein spaces. Global Analysis. Papers in honor of K. Kodaira, Princeton University Press, Princeton, 1969, pp. 355–365. | MR
[25] Z. I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, I, Local version. J. Differential Geom. 17 (1982), 531–582. | MR
[26] H. Takagi: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. J. 27 (1975), 103–110. | DOI | MR | Zbl
[27] A. Tomassini: Curvature homogeneous metrics on principal fibre bundles. Ann. Mat. Pura Appl. 172 (1997), 287–295. | DOI | MR | Zbl
[28] A. L. Yampol’skii: The curvature of the Sasaki metric of tangent sphere bundles (Russian). Ukrain. Geom. Sb. 28 (1985), 132–145. | MR