Unit tangent sphere bundles with constant scalar curvature
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 523-544 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.
As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.
Classification : 53C25
Keywords: unit tangent sphere bundles; constant scalar curvature; Einstein and Ricci-parallel metrics
@article{CMJ_2001_51_3_a6,
     author = {Boeckx, E. and Vanhecke, L.},
     title = {Unit tangent sphere bundles with constant scalar curvature},
     journal = {Czechoslovak Mathematical Journal},
     pages = {523--544},
     year = {2001},
     volume = {51},
     number = {3},
     mrnumber = {1851545},
     zbl = {1079.53063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a6/}
}
TY  - JOUR
AU  - Boeckx, E.
AU  - Vanhecke, L.
TI  - Unit tangent sphere bundles with constant scalar curvature
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 523
EP  - 544
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a6/
LA  - en
ID  - CMJ_2001_51_3_a6
ER  - 
%0 Journal Article
%A Boeckx, E.
%A Vanhecke, L.
%T Unit tangent sphere bundles with constant scalar curvature
%J Czechoslovak Mathematical Journal
%D 2001
%P 523-544
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a6/
%G en
%F CMJ_2001_51_3_a6
Boeckx, E.; Vanhecke, L. Unit tangent sphere bundles with constant scalar curvature. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 523-544. http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a6/

[1] J. Berndt, F. Tricerri and L. Vanhecke: Generalized Heisenberg groups and Damek-Ricci harmonic spaces. Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New York, 1995. | MR

[2] A. L. Besse: Manifolds all of whose geodesics are closed. Ergeb. Math. Grenzgeb. 93, Springer-Verlag, Berlin, Heidelberg, New York, 1978. | MR | Zbl

[3] A. L. Besse: Einstein manifolds. Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987. | MR | Zbl

[4] D. E. Blair: Contact manifolds in Riemannian geometry. Lecture Notes in Math. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976. | MR | Zbl

[5] D. E. Blair: When is the tangent sphere bundle locally symmetric? Geometry and Topology. World Scientific, Singapore, 1989, pp. 15–30. | MR

[6] D. E. Blair and T. Koufogiorgos: When is the tangent sphere bundle conformally flat? J. Geom. 49 (1994), 55–66. | DOI | MR

[7] E. Boeckx, O. Kowalski and L. Vanhecke: Riemannian manifolds of conullity two. World Scientific, Singapore, 1996. | MR

[8] E. Boeckx and L. Vanhecke: Characteristic reflections on unit tangent sphere bundles. Houston J. Math. 23 (1997), 427–448. | MR

[9] E. Boeckx and L. Vanhecke: Curvature homogeneous unit tangent sphere bundles. Publ. Math. Debrecen 53 (1998), 389–413. | MR

[10] P. Bueken: Three-dimensional Riemannian manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. J. Math. Phys. 37 (1996), 4062–4075. | MR

[11] B.-Y. Chen and L. Vanhecke: Differential geometry of geodesic spheres. J. Reine Angew. Math. 325 (1981), 28–67. | MR

[12] P. Gilkey, A. Swann and L. Vanhecke: Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator. Quart. J. Math. Oxford 46 (1995), 299–320. | DOI | MR

[13] A. Gray: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259–280. | DOI | MR | Zbl

[14] A. Gray and L. Vanhecke: Riemannian geometry as determined by the volumes of small geodesic balls. Acta Math. 142 (1979), 157–198. | DOI | MR

[15] A. Gray and T. J. Willmore: Mean-value theorems for Riemannian manifolds. Proc. Roy. Soc. Edinburgh Sect. A 92 (1982), 343–364. | DOI | MR

[16] S. Ivanov and I. Petrova: Riemannian manifolds in which certain curvature operator has constant eigenvalues along each circle. Ann. Global Anal. Geom. 15 (1997), 157–171. | DOI | MR

[17] O. Kowalski: A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolin. 30 (1989), 85–88. | MR | Zbl

[18] O. Kowalski: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. Nagoya Math. J. 132 (1993), 1–36. | DOI | MR

[19] O. Kowalski: An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czechoslovak Math. J. 46 (1996), 427–474. | MR | Zbl

[20] J. W. Milnor: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21 (1976), 293–329. | DOI | MR | Zbl

[21] E. Musso and F. Tricerri: Riemannian metrics on tangent bundles. Ann. Mat. Pura Appl. 150 (1988), 1–20. | DOI | MR

[22] K. Sekigawa and L. Vanhecke: Volume preserving geodesic symmetries on four-dimensional Kähler manifolds. Differential Geometry Peñiscola, 1985, Proceedings, A. M. Naveira, A. Ferrández and F. Mascaró (eds.), Lecture Notes in Math. 1209, Springer, pp. 275–290. | MR

[23] I. M. Singer: Infinitesimally homogeneous spaces. Comm. Pure Appl. Math. 13 (1960), 685–697. | DOI | MR | Zbl

[24] I. M. Singer and J. A. Thorpe: The curvature of 4-dimensional Einstein spaces. Global Analysis. Papers in honor of K. Kodaira, Princeton University Press, Princeton, 1969, pp. 355–365. | MR

[25] Z. I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, I, Local version. J. Differential Geom. 17 (1982), 531–582. | MR

[26] H. Takagi: Conformally flat Riemannian manifolds admitting a transitive group of isometries. Tôhoku Math. J. 27 (1975), 103–110. | DOI | MR | Zbl

[27] A. Tomassini: Curvature homogeneous metrics on principal fibre bundles. Ann. Mat. Pura Appl. 172 (1997), 287–295. | DOI | MR | Zbl

[28] A. L. Yampol’skii: The curvature of the Sasaki metric of tangent sphere bundles (Russian). Ukrain. Geom. Sb. 28 (1985), 132–145. | MR