Weak compactness criteria for set valued integrals and Radon Nikodym Theorem for vector valued multimeasures
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 493-504 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Some criteria for weak compactness of set valued integrals are given. Also we show some applications to the study of multimeasures on Banach spaces with the Radon-Nikodym property.
Some criteria for weak compactness of set valued integrals are given. Also we show some applications to the study of multimeasures on Banach spaces with the Radon-Nikodym property.
Classification : 28B05, 28B20, 46G10, 47D06, 49J53
Keywords: weak compactness; measurable multifunctions; Radon-Nikodym property; multimeasures
@article{CMJ_2001_51_3_a4,
     author = {B\'arcenas, Diomedes},
     title = {Weak compactness criteria for set valued integrals and {Radon} {Nikodym} {Theorem} for vector valued multimeasures},
     journal = {Czechoslovak Mathematical Journal},
     pages = {493--504},
     year = {2001},
     volume = {51},
     number = {3},
     mrnumber = {1851543},
     zbl = {1079.28501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a4/}
}
TY  - JOUR
AU  - Bárcenas, Diomedes
TI  - Weak compactness criteria for set valued integrals and Radon Nikodym Theorem for vector valued multimeasures
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 493
EP  - 504
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a4/
LA  - en
ID  - CMJ_2001_51_3_a4
ER  - 
%0 Journal Article
%A Bárcenas, Diomedes
%T Weak compactness criteria for set valued integrals and Radon Nikodym Theorem for vector valued multimeasures
%J Czechoslovak Mathematical Journal
%D 2001
%P 493-504
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a4/
%G en
%F CMJ_2001_51_3_a4
Bárcenas, Diomedes. Weak compactness criteria for set valued integrals and Radon Nikodym Theorem for vector valued multimeasures. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 493-504. http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a4/

[1] Z. Arststein: Weak convergence of set valued functions and control. SIAM, J. Control Optim. 13 (1975), 865–878. | DOI | MR

[2] I.Assani and A. Klei: Parties décomposables compactes de $L_E^1$. C. R. Acad. Sci. Paris, Ser. I 294 (1982), 533–536. | MR

[3] D. Barcenas and W. Urbina: Measurable multifunctions in non separable Banach spaces. SIAM, J. Math. Anal. 28 (1997), 1212–1226. | DOI | MR

[4] C. Castaing: Weak compactness criteria in set valued integration. Laboratorie d’Analyse convex, prepublication 1995/03. | Zbl

[5] C. Castaing and P. Clauzure: Compacite faible dans lespace des multifuntions integrablements bornees et minimizations. Ann. Mat. Pura Appl. (IV) 140 (1985), 345–364. | MR

[6] C. Castaing and M. Valadier: Convex Analysis and Measurable Multifunctions. LNM 586, Springer Verlag, Berlin, 1977. | MR

[7] W. J. Davis, T. Fiegel, W. B. Johnson and A. Pełczyński: Factoring weakly compact operators. J. Funct. Anal. 17 (1974), 311–327. | DOI | MR

[8] J. Diestel and W. Ruess and W. Schachermayer: On weak copactness in $L^1(\mu ,X)$. Proc. Amer. Math. Soc. 118 (1993), 443–453. | DOI | MR

[9] J. Diestel, J. J. Uhl: Vector measures. Amer. Math. Soc. Surveys vol.  15, Providence, R.I., 1977. | MR

[10] C. Godet Thobie: Some results about multimeasures and their selectors. Measure Theory, D. Kölzow (ed.), LNM 794, Springer-Verlag, Berlin, 1980, pp. 112–116. | MR | Zbl

[11] N. Ghoussoub and P. Saab: Weak compactness in spaces of Bochner integrable functions and the Radon-Nikodym property. Pacific J. Math. 110 (1984), 65–70. | DOI | MR

[12] F. Hiai: Radon-Nikodym theorems for set valued measures. J. Multivariate Anal. 8 (1978), 96–118. | DOI | MR | Zbl

[13] F. Hiai and H. Umegaki: Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal. 7 (1977), 149–182. | DOI | MR

[14] H. A. Klein: A compactness criteria in $L^1(E)$ and Radon-Nikodym theorems for multimeasures. Bull. Soc. Math. 2ê serie 112 (1988), 305–324.

[15] M. Muresan: On a boundary value problem for quasi-linear differential inclusions of evolution. Collect. Math. 45 (1994), 165–175. | MR | Zbl

[16] N. Papageorgiou: Contributions to the theory of set valued functions and set valued measures. Trans. Amer. Math. Soc. 304 (1987), 245–265. | DOI | MR | Zbl

[17] N. Papageorgiou: Boundary value problems for evolution inclusions. Comment. Math. Univ. Carolin. 29 (1988), 355–363. | MR | Zbl

[18] N. Papageorgiou: Decomponsable sets in the Lebesgue Bochner spaces. Comment. Math. Univ. St. Paul 37 (1988), 49–62. | MR

[19] N. Papageorgiou: Radon-Nikodym theorem for multimeasures and transition multimeasures. Proc. Amer. Math. Soc. 111 (1991), 465–474. | MR

[20] N. Papageorgiou: On the convergence properties of measurable multifuntions in a Banach space. Math. Japon. 37 (1992), 637–643. | MR

[21] N. Papageorgiou: On the conditional expectation and convergence properties of Radon sets. Trans. Amer. Math. Soc. 347 (1995), 2495–2515. | DOI | MR

[22] H. P. Rosenthal: A characterization of Banach spaces containing $l^1$. Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. | DOI | MR

[23] C. Stegall: The Radon-Nikodym property in conjugate Banach Spaces II. Trans. Amer. Math. Soc. 264 (1981), 507–519. | MR | Zbl

[24] X. Xiaoping, C. Lixing, L. Goucheng and Y. Xiaobo: Set valued mesures and integral representations. Comment. Math. Univ. Carolin. 37 (1996), 269–284. | MR