Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 643-660 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( {0;\rho _{0}}\right):={\left\rbrace {w\:{\left| {w}\right| }\rho _{0}} \right\lbrace }$ normalized by $\varphi (0)=0$ and ${\varphi }^{\prime }(0)=1$. Let us set $\varphi _{p}(z):=\int _{0}^{z}{{\left[ {{\varphi } ^{\prime }(\zeta )}\right] }^{{2}/{p}}}\mathrm{d}\zeta $, and let $\pi _{n,p}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _{G}{{\left| {{\varphi }_{p}^{\prime }(z)-{P}_{n}^{\prime }(z)}\right| }}^{p}\mathrm{d}\sigma _{z}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_{n}(0)=0$, ${P}_{n}^{\prime }(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _{n,p}(z)$ to $\varphi _{p}(z)$ on $\overline{G}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.
Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( {0;\rho _{0}}\right):={\left\rbrace {w\:{\left| {w}\right| }\rho _{0}} \right\lbrace }$ normalized by $\varphi (0)=0$ and ${\varphi }^{\prime }(0)=1$. Let us set $\varphi _{p}(z):=\int _{0}^{z}{{\left[ {{\varphi } ^{\prime }(\zeta )}\right] }^{{2}/{p}}}\mathrm{d}\zeta $, and let $\pi _{n,p}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _{G}{{\left| {{\varphi }_{p}^{\prime }(z)-{P}_{n}^{\prime }(z)}\right| }}^{p}\mathrm{d}\sigma _{z}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_{n}(0)=0$, ${P}_{n}^{\prime }(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _{n,p}(z)$ to $\varphi _{p}(z)$ on $\overline{G}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.
Classification : 30C10, 30C30, 30C70, 30E10
Keywords: conformal mapping; Quasiconformal curve; Bieberbach polynomials; complex approximation
@article{CMJ_2001_51_3_a14,
     author = {Abdullayev, F. G.},
     title = {Uniform convergence of the generalized {Bieberbach} polynomials in regions with zero angles},
     journal = {Czechoslovak Mathematical Journal},
     pages = {643--660},
     year = {2001},
     volume = {51},
     number = {3},
     mrnumber = {1851553},
     zbl = {1079.30506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a14/}
}
TY  - JOUR
AU  - Abdullayev, F. G.
TI  - Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 643
EP  - 660
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a14/
LA  - en
ID  - CMJ_2001_51_3_a14
ER  - 
%0 Journal Article
%A Abdullayev, F. G.
%T Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles
%J Czechoslovak Mathematical Journal
%D 2001
%P 643-660
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a14/
%G en
%F CMJ_2001_51_3_a14
Abdullayev, F. G. Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 643-660. http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a14/

[1] F. G. Abdullayev: On the orthogonal polynomials in domains with quasiconformal boundary. Dissertation, Donetsk (1986). (Russian)

[2] F. G. Abdullayev: On the convergence of Bieberbach polynomials in domains with interior zero angles. Dokl. Akad. Nauk. Ukrain. SSR, Ser. A 12 (1989), 3–5. (Russian) | MR

[3] F. G. Abdullayev: On the convergence of Fourier series by orthogonal polynomials in domains with piecevise-quasiconformal boundary. Theory of Mappings and Approximation, Naukova Dumka, Kiev, 1989, pp. 3–12.

[4] F. G. Abdullayev: Uniform convergence of the generalized Bieberbach polynomials in regions with non zero angles. Acta Math. Hungar. 77 (1997), 223–246. | DOI | MR | Zbl

[5] F. G. Abdullayev and A. Baki: On the convergence of Bieberbach polynomials in domains with interior zero angles. Complex Anal. Theor. & Appl. 34 (2001). | MR

[6] F. G. Abdullayev and A. Çavuş: On the uniform convergence of the generalized Bieberbach polynomials in regions with quasiconformal boundary. (to appear).

[7] L. V. Ahlfors: Lectures on Quasiconformal Mappings. Princeton, NJ: Van Nostrand, 1966. | MR | Zbl

[8] V. V. Andrievskii: Uniform convergence of Bieberbach polynomials in domains with zero angles. Dokl. Akad. Nauk. Ukrain. SSR, Ser. A (1982), 3–5. (Russian) | MR

[9] V. V. Andrievskii: Uniform convergence of Bieberbach polynomials in domains with piecewise quasiconformal boundary. Theory of Mappings and Approximation of Functions, Kiev, Naukova Dumka, 1983, pp. 3–18. (Russian) | MR

[10] V. V. Andrievskii: Convergence of Bieberbach polynomials in domains with quasiconformal boundary. Trans. Ukrainian Math. J. 35 (1984), 233–236. | DOI

[11] V. I. Belyi: Conformal mappings and the approximation of analytic functions in domains with a quasiconformal boundary. Math. USSR-Sb. 31 (1977), 289–317. | DOI | Zbl

[12] V. I. Belyi and I. E. Pritsker: On the curved wedge condition and the continuity moduli of conformal mapping. Ukrain. Mat. Zh. 45 (1993), 763–769. | DOI | MR

[13] P. J. Davis: Interpolation and Approximation. Blaisdell Publishing Company, 1963. | MR | Zbl

[14] D. Gaier: On the convergence of the Bieberbach polynomials in regions with corners. Constr. Approx. 4 (1988), 289–305. | DOI | MR | Zbl

[15] D. Gaier: On the convergence of the Bieberbach polynomials in regions with piecewise-analytic boundary. Arch. Math. 58 (1992), 462–470. | DOI | MR | Zbl

[16] D. M. Israfilov: On the approximation properties of extremal polynomials. Dep. VINITI, No. 5461 (1981). (Russian) | MR

[17] M. V. Keldych: Sur l’approximation en moyenne quadratique des fonctions analytiques. Math. Sb. 5(47) (1939), 391–401. | MR

[18] I. V. Kulikov: $L_{p}$-convergence of Bieberbach polynomials. Math. USSR-Izv. 15 (1980), 349–371. | DOI | MR | Zbl

[19] O. Lehto and K. I. Virtanen: Quasiconformal mappings in the plane. Springer-Verlag, Berlin, 1973. | MR

[20] S. N. Mergelyan: Certain questions of the constructive theory of functions. Trudy Math. Inst. Steklov 37 (1951). (Russian) | MR

[21] Ch. Pommerenke: Univalent Functions. Göttingen, 1975. | MR | Zbl

[22] I. I. Privalov: Introduction to the theory of functions of a complex variable. Nauka, Moscow, 1984. | MR | Zbl

[23] V. I. Smirnov and N. A. Lebedev: Functions of a Complex Variable. Constructive Theory. The M.I.T. PRESS, 1968. | MR

[24] I. B. Simonenko: On the convergence of Bieberbach polynomials in the case of a Lipshitz domain. Math. USSR-Izv. 13 (1980), 166–174. | DOI

[25] P. K. Suetin: Polynomials orthogonal over a region and Bieberbach polynomials. Proc. Steklov Inst. Math. 100 (1971), Providence, Rhode Island: Amer. Math. Soc., 1974. | MR | Zbl

[26] P. M. Tamrazov: Smoothness and Polynomial Approximation. Naukova Dumka, Kiev, 1975. (Russian)

[27] A. Torchincky: Real variables. Calif. Addison-Wesley, 1988.

[28] J. L. Walsh: Interpolation and approximation by rational functions in the complex domain. Moscow, 1961. (Russian) | MR | Zbl

[29] Wu Xue-Mou: On Bieberbach polynomials. Acta Math. Sinica 13 (1963), 145–151. | MR | Zbl