A characterization of the interval function of a (finite or infinite) connected graph
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 635-642 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By the interval function of a finite connected graph we mean the interval function in the sense of H. M. Mulder. This function is very important for studying properties of a finite connected graph which depend on the distance between vertices. The interval function of a finite connected graph was characterized by the present author. The interval function of an infinite connected graph can be defined similarly to that of a finite one. In the present paper we give a characterization of the interval function of each connected graph.
By the interval function of a finite connected graph we mean the interval function in the sense of H. M. Mulder. This function is very important for studying properties of a finite connected graph which depend on the distance between vertices. The interval function of a finite connected graph was characterized by the present author. The interval function of an infinite connected graph can be defined similarly to that of a finite one. In the present paper we give a characterization of the interval function of each connected graph.
Classification : 05C12
Keywords: distance in a graph; interval function
@article{CMJ_2001_51_3_a13,
     author = {Nebesk\'y, Ladislav},
     title = {A characterization of the interval function of a (finite or infinite) connected graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {635--642},
     year = {2001},
     volume = {51},
     number = {3},
     mrnumber = {1851552},
     zbl = {1079.05505},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a13/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - A characterization of the interval function of a (finite or infinite) connected graph
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 635
EP  - 642
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a13/
LA  - en
ID  - CMJ_2001_51_3_a13
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T A characterization of the interval function of a (finite or infinite) connected graph
%J Czechoslovak Mathematical Journal
%D 2001
%P 635-642
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a13/
%G en
%F CMJ_2001_51_3_a13
Nebeský, Ladislav. A characterization of the interval function of a (finite or infinite) connected graph. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 635-642. http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a13/

[1] H.-J.  Bandelt and V.  Chepoi: A Helly theorem in weakly modular space. Discrete Math. 160 (1996), 25–39. | DOI | MR

[2] H.-J.  Bandelt, M.  van de Vel and E.  Verheul: Modular interval spaces. Math. Nachr. 163 (1993), 177–201. | DOI | MR

[3] H. M.  Mulder: The Interval Function of a Graph. Mathematish Centrum, Amsterdam, 1980. | MR | Zbl

[4] H. M.  Mulder: Transit functions on graphs. In preparation. | Zbl

[5] L.  Nebeský: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44(119) (1994), 173–178. | MR

[6] L.  Nebeský: Characterizing the interval function of a connected graph. Math. Bohem. 123 (1998), 137–144. | MR