On the generalized Drazin inverse and generalized resolvent
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 617-634 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in $C^*$-algebras is considered. We investigate the generalized Drazin inverse as an outer inverse with prescribed range and kernel. Also, $2\times 2$ operator matrices are considered. As corollaries, we get some well-known results.
We investigate the generalized Drazin inverse and the generalized resolvent in Banach algebras. The Laurent expansion of the generalized resolvent in Banach algebras is introduced. The Drazin index of a Banach algebra element is characterized in terms of the existence of a particularly chosen limit process. As an application, the computing of the Moore-Penrose inverse in $C^*$-algebras is considered. We investigate the generalized Drazin inverse as an outer inverse with prescribed range and kernel. Also, $2\times 2$ operator matrices are considered. As corollaries, we get some well-known results.
Classification : 46H30, 46L05, 47A05, 47A10
Keywords: Drazin inverse; generalized resolvent; limit processes; outer inverses; operator matrices
@article{CMJ_2001_51_3_a12,
     author = {Djordjevi\'c, Dragan S. and Stanimirovi\'c, Predrag S.},
     title = {On the generalized {Drazin} inverse and generalized resolvent},
     journal = {Czechoslovak Mathematical Journal},
     pages = {617--634},
     year = {2001},
     volume = {51},
     number = {3},
     mrnumber = {1851551},
     zbl = {1079.47501},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a12/}
}
TY  - JOUR
AU  - Djordjević, Dragan S.
AU  - Stanimirović, Predrag S.
TI  - On the generalized Drazin inverse and generalized resolvent
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 617
EP  - 634
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a12/
LA  - en
ID  - CMJ_2001_51_3_a12
ER  - 
%0 Journal Article
%A Djordjević, Dragan S.
%A Stanimirović, Predrag S.
%T On the generalized Drazin inverse and generalized resolvent
%J Czechoslovak Mathematical Journal
%D 2001
%P 617-634
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a12/
%G en
%F CMJ_2001_51_3_a12
Djordjević, Dragan S.; Stanimirović, Predrag S. On the generalized Drazin inverse and generalized resolvent. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 617-634. http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a12/

[1] A. Ben-Israel: On matrices of index zero or one. SIAM J. Appl. Math. 17 (1969), 1118–1121. | DOI | MR | Zbl

[2] A. Ben-Israel and T. N. E. Greville: Generalized Inverses: Theory and Applications. Wiley-Interscience, New York, 1974. | MR

[3] S. L. Campbell and C. D. Meyer: Generalized Inverses of Linear Transformations. Pitman, New York, 1979.

[4] S. L. Campbell, C. D. Meyer and N. J. Rose: Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients. SIAM J. Appl. Math. 31 (1976), 411–425. | DOI | MR

[5] S. R. Caradus: Generalized Inverses and Operator Theory. Queen’s paper in pure and applied mathematics, Quenn’s University, Kingston, Ontario, 1978. | MR | Zbl

[6] K.-H. Förster and B. Nagy: Transfer functions and spectral projections. Publ. Math. Debrecen 52 (1998), 367–376. | MR

[7] C. W. Groetch: Representation of the generalized inverse. J. Math. Anal. Appl. 49 (1975), 154–157. | DOI

[8] W. Guorong: An imbedding method for computing the generalized inverse. J. Comput. Math. 8 (1990), 353–362. | MR

[9] W. Guorong and Y. Wei: Limiting expression for generalized inverse $A_{T,S}^{(2)}$ and its corresponding projectors. Numerical Mathematics (A Journal of Chinese Universities) 4 (1995), 25–30. | MR

[10] R. E. Harte: Spectral projections. Irish Math. Soc. Newsletter 11 (1984), 10–15. | MR | Zbl

[11] R. E. Harte: Invertibility and Singularity for Bounded Linear Operators. New York, Marcel Dekker, 1988. | MR | Zbl

[12] R. E. Harte: On quasinilpotents in rings. Panamer. Math. J. 1 (1991), 10–16. | MR | Zbl

[13] R. E. Harte and M. Mbekhta: On generalized inverses in $C^*$-algebras. Studia Math. 103 (1992), 71–77. | DOI | MR

[14] J. Ji: An alternative limit expression of Drazin inverse and its application. Appl. Math. Comput. 61 (1994), 151–156. | DOI | MR | Zbl

[15] J. J. Koliha: A generalized Drazin inverse. Glasgow Math. J. 38 (1996), 367–381. | DOI | MR | Zbl

[16] J. J. Koliha and V. Rakočević: Continuity of the Drazin inverse II. Studia Math. 131 (1998), 167–177. | MR

[17] I. Marek and K. Žitný: Matrix Analysis for Applied Sciences. Teubner-Texte zur Mathematik, Band 84, Leipzig, 1986. | MR

[18] C. D. Meyer: Limits and the index of a square matrix. SIAM J. Appl. Math. 26 (1974), 469–478. | DOI | MR | Zbl

[19] C. D. Meyer, Jr. and N. J. Rose: The index and the Drazin inverse of block triangular matrices. SIAM J. App. Math. 33 (1977), 1–7. | DOI | MR

[20] V. Rakočević: Continuity of the Drazin inverse. J. Operator Theory 41 (1999), 55–68. | MR

[21] N. J. Rose: The Laurent expansion of a generalized resolvent with some applications. SIAM J. Math. Anal. 9 (1978), 751–758. | DOI | MR | Zbl

[22] U. G. Rothblum: A representation of the Drazin inverse and characterizations of the index. SIAM J. Appl. Math. 31 (1976), 646–648. | DOI | MR | Zbl

[23] U. G. Rothblum: Resolvent expansion of matrices and applications. Linear Algebra Appl. 38 (1981), 33–49. | MR

[24] P. S. Stanimirović: Limit representations of generalized inverses and related methods. Appl. Math. Comput. 103 (1999) (to appear). | MR

[25] Y. Wei: A survey on the generalized inverse $A_{T,S}^{(2)}$. Actas/Proceedings, Meetings on Matrix Analysis and Applications, Sevilla, Spain, (EAMA), Sep. 10–12,, 1997, pp. 421–428.

[26] Y. Wei: A characterization and representation of the generalized inverse $A_{T,S}^{(2)}$ and its applications. Linear Algebra Appl. 280 (1998), 87–96. | MR

[27] Y. Wei: A characterization of the Drazin inverse. SIAM J. Matrix Anal. Appl. 17 (1996), 744–747. | DOI | MR