Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 585-608 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The rate of growth of the energy integral of a quasiregular mapping $f\:\mathcal X\rightarrow \mathcal Y$ is estimated in terms of a special isoperimetric condition on $\mathcal Y$. The estimate leads to new Phragmén-Lindelöf type theorems.
The rate of growth of the energy integral of a quasiregular mapping $f\:\mathcal X\rightarrow \mathcal Y$ is estimated in terms of a special isoperimetric condition on $\mathcal Y$. The estimate leads to new Phragmén-Lindelöf type theorems.
Classification : 30C65, 35J60
Keywords: Phragmén-Lindelöf type theorems; quasiregular mappings; isoperimetry
@article{CMJ_2001_51_3_a10,
     author = {Martio, O. and Miklyukov, V. and Vuorinen, M.},
     title = {Estimates for the energy integral of quasiregular mappings on {Riemannian} manifolds and isoperimetry},
     journal = {Czechoslovak Mathematical Journal},
     pages = {585--608},
     year = {2001},
     volume = {51},
     number = {3},
     mrnumber = {1851549},
     zbl = {1079.30508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a10/}
}
TY  - JOUR
AU  - Martio, O.
AU  - Miklyukov, V.
AU  - Vuorinen, M.
TI  - Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 585
EP  - 608
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a10/
LA  - en
ID  - CMJ_2001_51_3_a10
ER  - 
%0 Journal Article
%A Martio, O.
%A Miklyukov, V.
%A Vuorinen, M.
%T Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry
%J Czechoslovak Mathematical Journal
%D 2001
%P 585-608
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a10/
%G en
%F CMJ_2001_51_3_a10
Martio, O.; Miklyukov, V.; Vuorinen, M. Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 585-608. http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a10/

[1] L.  Ahlfors: Zur Theorie Überlagerungsflächen. Acta Math. 65 (1935), 157–194. | DOI | MR

[2] V. A.  Botvinnik: Phragmén-Lindelöf’s theorems for space mappings with boundary distortion. Dissertation, Volgograd (1983), 1–96.

[3] Yu. D.  Burago and V. A.  Zalgaller: Geometric Inequalities. Nauka, Moscow, 1980. | MR

[4] C. Croke: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. (4) Ser. 13 (1980), 419–435. | MR | Zbl

[5] H.  Federer: Geometric Measure Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1969. | MR | Zbl

[6] S.  Granlund, P.  Lindqvist, and O.  Martio: Phragmén–Lindelöf’s and Lindelöf’s theorem. Ark. Mat. 23 (1985), 103–128. | DOI | MR

[7] M.  Gromov: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82 (1985), 307–347. | DOI | MR

[8] J.  Heinonen, T.  Kilpeläinen and O.  Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Clarendon Press, 1993. | MR

[9] D.  Hoffman and J.  Spruck: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math. 27 (1974), 715–727. | DOI | MR

[10] I. Holopainen and S. Rickman: Classification of Riemannian manifolds in nonlinear potential theory. Potential Analysis 2 (1993), 37–66. | DOI | MR

[11] A. S.  Kronrod: On functions of two variables. Uspekhi Mat. Nauk 5 (1950), 24–134. (Russian) | MR

[12] O.  Martio, V.  Miklyukov and M.  Vuorinen: Differential forms and quasiregular mappings on Riemannian manifolds. XVIth Rolf Nevanlinna Colloquium (I. Laine and O. Martio, eds.), Walter de Gruyter &Co, 1996, pp. 151–159. | MR

[13] O.  Martio, V.  Miklyukov and M.  Vuorinen: Phragmén – Lindelöf’s principle for quasiregular mappings and isoperimetry. Dokl. Akad. Nauk 347 (1996), 303–305. (Russian) | MR

[14] V. M.  Miklyukov: Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion. Mat. Sb. 11 (1980), 42–66. (Russian) | MR

[15] P.  Pansu: Quasiconformal mappings and manifolds of negative curvature. Curvature and Topology of Riemannian Manifolds. Proceed. 17th Int. Taniguchi Symp., Katata, Japan, Aug. 26-31, 1985. | MR | Zbl

[16] E.  Phragmén and E.  Lindelöf: Sur une extension d’un principe classique de l’analyse et sur quelques propriétés des fonctions monogenènes dans le voisinage d’un point singulier. Acta Math. 31 (1908), 381–406. | DOI | MR

[17] S.  Rickman and M.  Vuorinen: On the order of quasiregular mappings. Ann. Acad. Sci. Fenn. Math. 7 (1982), 221–231. | DOI | MR

[18] M.  Vuorinen: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math., 1319, Springer-Verlag. | MR | Zbl

[19] S. T. Yau: Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. 8 (1975), 487–507. | DOI | MR | Zbl