Keywords: Phragmén-Lindelöf type theorems; quasiregular mappings; isoperimetry
@article{CMJ_2001_51_3_a10,
author = {Martio, O. and Miklyukov, V. and Vuorinen, M.},
title = {Estimates for the energy integral of quasiregular mappings on {Riemannian} manifolds and isoperimetry},
journal = {Czechoslovak Mathematical Journal},
pages = {585--608},
year = {2001},
volume = {51},
number = {3},
mrnumber = {1851549},
zbl = {1079.30508},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a10/}
}
TY - JOUR AU - Martio, O. AU - Miklyukov, V. AU - Vuorinen, M. TI - Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry JO - Czechoslovak Mathematical Journal PY - 2001 SP - 585 EP - 608 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a10/ LA - en ID - CMJ_2001_51_3_a10 ER -
%0 Journal Article %A Martio, O. %A Miklyukov, V. %A Vuorinen, M. %T Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry %J Czechoslovak Mathematical Journal %D 2001 %P 585-608 %V 51 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a10/ %G en %F CMJ_2001_51_3_a10
Martio, O.; Miklyukov, V.; Vuorinen, M. Estimates for the energy integral of quasiregular mappings on Riemannian manifolds and isoperimetry. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 3, pp. 585-608. http://geodesic.mathdoc.fr/item/CMJ_2001_51_3_a10/
[1] L. Ahlfors: Zur Theorie Überlagerungsflächen. Acta Math. 65 (1935), 157–194. | DOI | MR
[2] V. A. Botvinnik: Phragmén-Lindelöf’s theorems for space mappings with boundary distortion. Dissertation, Volgograd (1983), 1–96.
[3] Yu. D. Burago and V. A. Zalgaller: Geometric Inequalities. Nauka, Moscow, 1980. | MR
[4] C. Croke: Some isoperimetric inequalities and eigenvalue estimates. Ann. Sci. École Norm. Sup. (4) Ser. 13 (1980), 419–435. | MR | Zbl
[5] H. Federer: Geometric Measure Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1969. | MR | Zbl
[6] S. Granlund, P. Lindqvist, and O. Martio: Phragmén–Lindelöf’s and Lindelöf’s theorem. Ark. Mat. 23 (1985), 103–128. | DOI | MR
[7] M. Gromov: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82 (1985), 307–347. | DOI | MR
[8] J. Heinonen, T. Kilpeläinen and O. Martio: Nonlinear Potential Theory of Degenerate Elliptic Equations. Clarendon Press, 1993. | MR
[9] D. Hoffman and J. Spruck: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math. 27 (1974), 715–727. | DOI | MR
[10] I. Holopainen and S. Rickman: Classification of Riemannian manifolds in nonlinear potential theory. Potential Analysis 2 (1993), 37–66. | DOI | MR
[11] A. S. Kronrod: On functions of two variables. Uspekhi Mat. Nauk 5 (1950), 24–134. (Russian) | MR
[12] O. Martio, V. Miklyukov and M. Vuorinen: Differential forms and quasiregular mappings on Riemannian manifolds. XVIth Rolf Nevanlinna Colloquium (I. Laine and O. Martio, eds.), Walter de Gruyter &Co, 1996, pp. 151–159. | MR
[13] O. Martio, V. Miklyukov and M. Vuorinen: Phragmén – Lindelöf’s principle for quasiregular mappings and isoperimetry. Dokl. Akad. Nauk 347 (1996), 303–305. (Russian) | MR
[14] V. M. Miklyukov: Asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion. Mat. Sb. 11 (1980), 42–66. (Russian) | MR
[15] P. Pansu: Quasiconformal mappings and manifolds of negative curvature. Curvature and Topology of Riemannian Manifolds. Proceed. 17th Int. Taniguchi Symp., Katata, Japan, Aug. 26-31, 1985. | MR | Zbl
[16] E. Phragmén and E. Lindelöf: Sur une extension d’un principe classique de l’analyse et sur quelques propriétés des fonctions monogenènes dans le voisinage d’un point singulier. Acta Math. 31 (1908), 381–406. | DOI | MR
[17] S. Rickman and M. Vuorinen: On the order of quasiregular mappings. Ann. Acad. Sci. Fenn. Math. 7 (1982), 221–231. | DOI | MR
[18] M. Vuorinen: Conformal Geometry and Quasiregular Mappings. Lecture Notes in Math., 1319, Springer-Verlag. | MR | Zbl
[19] S. T. Yau: Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. École Norm. Sup. 8 (1975), 487–507. | DOI | MR | Zbl