The general structure of inverse polynomial modules
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 343-349 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we compute injective, projective and flat dimensions of inverse polynomial modules as $R[x]$-modules. We also generalize Hom and Ext functors of inverse polynomial modules to any submonoid but we show Tor functor of inverse polynomial modules can be generalized only for a symmetric submonoid.
In this paper we compute injective, projective and flat dimensions of inverse polynomial modules as $R[x]$-modules. We also generalize Hom and Ext functors of inverse polynomial modules to any submonoid but we show Tor functor of inverse polynomial modules can be generalized only for a symmetric submonoid.
Classification : 13C11, 16D50, 16D80, 16E05, 16E10, 16E30, 16S36
Keywords: module; inverse polynomial; homological dimensions; Hom; Ext; Tor
@article{CMJ_2001_51_2_a8,
     author = {Park, Sangwon},
     title = {The general structure of inverse polynomial modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {343--349},
     year = {2001},
     volume = {51},
     number = {2},
     mrnumber = {1844314},
     zbl = {0983.16006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a8/}
}
TY  - JOUR
AU  - Park, Sangwon
TI  - The general structure of inverse polynomial modules
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 343
EP  - 349
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a8/
LA  - en
ID  - CMJ_2001_51_2_a8
ER  - 
%0 Journal Article
%A Park, Sangwon
%T The general structure of inverse polynomial modules
%J Czechoslovak Mathematical Journal
%D 2001
%P 343-349
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a8/
%G en
%F CMJ_2001_51_2_a8
Park, Sangwon. The general structure of inverse polynomial modules. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 343-349. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a8/

[1] F. S. Macaulay: The algebraic theory of modular system. Cambridge Tracts in Math. 19 (1916).

[2] H.  Matsumura: Commutative Algebra. W. A. Benjamin, Inc., New York, 1970. | MR | Zbl

[3] A. S.  McKerrow: On the injective dimension of modules of power series. Quart J.  Math. Oxford Ser. (2), 25 (1974), 359–368. | DOI | MR | Zbl

[4] D. G. Northcott: Injective envelopes and inverse polynomials. J. London Math. Soc. (2), 8 (1974), 290–296. | MR | Zbl

[5] S. Park: Inverse polynomials and injective covers. Comm. Algebra 21 (1993), 4599–4613. | DOI | MR | Zbl

[6] S. Park: The Macaulay-Northcott functor. Arch. Math. (Basel) 63 (1994), 225–230. | DOI | MR | Zbl

[7] J. Rotman: An Introduction to Homological Algebra. Academic Press Inc., New York, 1979. | MR | Zbl