Keywords: module; inverse polynomial; homological dimensions; Hom; Ext; Tor
@article{CMJ_2001_51_2_a8,
author = {Park, Sangwon},
title = {The general structure of inverse polynomial modules},
journal = {Czechoslovak Mathematical Journal},
pages = {343--349},
year = {2001},
volume = {51},
number = {2},
mrnumber = {1844314},
zbl = {0983.16006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a8/}
}
Park, Sangwon. The general structure of inverse polynomial modules. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 343-349. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a8/
[1] F. S. Macaulay: The algebraic theory of modular system. Cambridge Tracts in Math. 19 (1916).
[2] H. Matsumura: Commutative Algebra. W. A. Benjamin, Inc., New York, 1970. | MR | Zbl
[3] A. S. McKerrow: On the injective dimension of modules of power series. Quart J. Math. Oxford Ser. (2), 25 (1974), 359–368. | DOI | MR | Zbl
[4] D. G. Northcott: Injective envelopes and inverse polynomials. J. London Math. Soc. (2), 8 (1974), 290–296. | MR | Zbl
[5] S. Park: Inverse polynomials and injective covers. Comm. Algebra 21 (1993), 4599–4613. | DOI | MR | Zbl
[6] S. Park: The Macaulay-Northcott functor. Arch. Math. (Basel) 63 (1994), 225–230. | DOI | MR | Zbl
[7] J. Rotman: An Introduction to Homological Algebra. Academic Press Inc., New York, 1979. | MR | Zbl