On Pták’s generalization of Hankel operators
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 323-342 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In 1997 Pták defined generalized Hankel operators as follows: Given two contractions $T_1\in {\mathcal B}({\mathcal H}_1)$ and $T_2 \in {\mathcal B}({\mathcal H}_2)$, an operator $X \:{\mathcal H}_1 \rightarrow {\mathcal H}_2$ is said to be a generalized Hankel operator if $T_2X=XT_1^*$ and $X$ satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of $T_1$ and $T_2$. This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat hidden connection between the theories (P) and (PV) and we clarify that connection by proving that (P) is more general than (PV), even strictly more general for some $T_1$ and $T_2$, and by studying when they coincide. Then we characterize the existence of Hankel operators, Hankel symbols and analytic Hankel symbols, solving in this way some open problems proposed by Pták.
In 1997 Pták defined generalized Hankel operators as follows: Given two contractions $T_1\in {\mathcal B}({\mathcal H}_1)$ and $T_2 \in {\mathcal B}({\mathcal H}_2)$, an operator $X \:{\mathcal H}_1 \rightarrow {\mathcal H}_2$ is said to be a generalized Hankel operator if $T_2X=XT_1^*$ and $X$ satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of $T_1$ and $T_2$. This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat hidden connection between the theories (P) and (PV) and we clarify that connection by proving that (P) is more general than (PV), even strictly more general for some $T_1$ and $T_2$, and by studying when they coincide. Then we characterize the existence of Hankel operators, Hankel symbols and analytic Hankel symbols, solving in this way some open problems proposed by Pták.
Classification : 46E22, 47A20, 47B35
Keywords: Toeplitz operators; Hankel operators; minimal isometric dilation
@article{CMJ_2001_51_2_a7,
     author = {Mancera, Carmen H. and Pa\'ul, Pedro J.},
     title = {On {Pt\'ak{\textquoteright}s} generalization of {Hankel} operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {323--342},
     year = {2001},
     volume = {51},
     number = {2},
     mrnumber = {1844313},
     zbl = {0983.47019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a7/}
}
TY  - JOUR
AU  - Mancera, Carmen H.
AU  - Paúl, Pedro J.
TI  - On Pták’s generalization of Hankel operators
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 323
EP  - 342
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a7/
LA  - en
ID  - CMJ_2001_51_2_a7
ER  - 
%0 Journal Article
%A Mancera, Carmen H.
%A Paúl, Pedro J.
%T On Pták’s generalization of Hankel operators
%J Czechoslovak Mathematical Journal
%D 2001
%P 323-342
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a7/
%G en
%F CMJ_2001_51_2_a7
Mancera, Carmen H.; Paúl, Pedro J. On Pták’s generalization of Hankel operators. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 323-342. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a7/

[1] P.  Alegría: Parametrization and Schur algorithm for the integral representation of Hankel forms in $\mathbb{T}^3$. Collect. Math. 43 (1992), 253–272. | MR

[2] J.  Arazy, S. D.  Fisher, J.  Peetre: Hankel operators on weighted Bergman spaces. Amer. J. Math. 110 (1988), 989–1053. | DOI | MR

[3] S.  Axler: Bergman spaces and their operators. Surveys of Some Recent Results in Operator Theory, I, J. B.  Conway, B. B.  Morrel (eds.), Res. Notes Math. vol. 171, Pitman, Boston, London and Melbourne, 1988. | MR | Zbl

[4] S.  Axler, J. B.  Conway, G.  McDonald: Toeplitz operators on Bergman spaces. Canad. J. Math. 34 (1982), 466–483. | DOI | MR

[5] J.  Barría: The commutative product $V^*_{1}V_{2}=V_{2}V_{1}^* $ for isometries $V_{1}$ and $V_{2}$. Indiana Univ. Math. J. 28 (1979), 581–586. | MR | Zbl

[6] E. L.  Basor, I.  Gohberg: Toeplitz Operators and Related Topics. Operator Theory: Adv. Appl., vol. 71, Birkhäuser-Verlag, Basel, Berlin and Boston, 1994. | MR

[7] C. A.  Berger, L. A.  Coburn: Toeplitz operators on the Segal-Bargmann space. Trans. Amer. Math. Soc. 301 (1987), 813–829. | DOI | MR

[8] F. F.  Bonsall, S. C.  Power: A proof of Hartman’s theorem on compact Hankel operators. Math. Proc. Cambridge Philos. Soc. 78 (1975), 447–450. | DOI | MR

[9] A.  Böttcher, B.  Silbermann: Analysis of Toeplitz Operators. Springer-Verlag, Berlin, Heidelberg and New York, 1990. | MR

[10] A.  Brown, P. R.  Halmos: Algebraic properties of Toeplitz operators. J.  Reine Angew. Math. 213 (1963), 89–102. | MR

[11] J. B.  Conway, J.  Duncan, A. L. T.  Paterson: Monogenic inverse semigroups and their $C^*$-algebras. Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 13–24. | MR

[12] M. Cotlar, C. Sadosky: Prolongements des formes de Hankel généralisées et formes de Toeplitz. C.  R. Acad. Sci. Paris, Ser. I 305 (1987), 167–170. | MR

[13] Ž.  Čučković: Commutants of Toeplitz operators on the Bergman space. Pacific J. Math. 162 (1994), 277–285. | DOI | MR

[14] Ž.  Čučković: Commuting Toeplitz operators on the Bergman space of an annulus. Michigan Math. J. 43 (1996), 355–365. | DOI | MR

[15] K. R. Davidson: Approximate unitary equivalence of power partial isometries. Proc. Amer. Math. Soc. 91 (1984), 81–84. | DOI | MR | Zbl

[16] A.  Devinatz: Toeplitz operators on $H^2$ spaces. Trans. Amer. Math. Soc. 112 (1964), 307–317. | MR

[17] R. G.  Douglas: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (1966), 413–415. | DOI | MR | Zbl

[18] R. G.  Douglas: On the operator equation $S^*XT=X$ and related topics. Acta Sci. Math. (Szeged) 30 (1969), 19–32. | MR | Zbl

[19] R. G.  Douglas: Banach Algebra Techniques in Operator Theory. Academic Press, New York, 1972. | MR | Zbl

[20] P. R.  Halmos: Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Second edition, Chelsea, New York, 1957. | MR | Zbl

[21] P. R.  Halmos: A Hilbert Space Problem Book. Second edition, Springer-Verlag, Berlin, Heidelberg and New York, 1982. | MR | Zbl

[22] P. R.  Halmos, L. J.  Wallen: Powers of partial isometries. J.  Math. Mech. 19 (1969/1970), 657–663. | MR

[23] D. A.  Herrero: Quasidiagonality, similarity and approximation by nilpotent operators. Indiana Univ. Math. J. 30 (1981), 199–233. | DOI | MR | Zbl

[24] T. B.  Hoover, A.  Lambert: Equivalence of power partial isometries. Duke Math. J. 41 (1974), 855–864. | DOI | MR

[25] J.  Janas, K.  Rudol: Toeplitz operators in infinitely many variables. Topics in Operator Theory, Operator Algebras and Applications (Timisoara, 1994), Rom. Acad., Bucharest, 1995, pp. 147–160. | MR

[26] C. H. Mancera, P. J. Paúl: Compact and finite rank operators satisfying a Hankel type equation $T_2X=XT_1^*$. Integral Equations Operator Theory (to appear), . | MR

[27] C. H. Mancera, P. J. Paúl: Properties of generalized Toeplitz operators. Integral Equations Operator Theory (to appear), . | MR

[28] C. H. Mancera, P. J. Paúl: Remarks, examples and spectral properties of generalized Toeplitz operators. Acta Sci. Math. (Szeged) 66 (2000), 737–753. | MR

[29] C. Le Merdy: Formes bilinéaires hankéliennes compactes sur $H^2(X) \times H^2(Y)$. Math. Ann. 293 (1992), 371-384. | DOI | MR

[30] G. L.  Murphy: Inner functions and Toeplitz operators. Canad. Math. Bull. 36 (1993), 324–331. | DOI | MR | Zbl

[31] Z.  Nehari: On bounded bilinear forms. Ann. Math. 65 (1957), 153–162. | DOI | MR | Zbl

[32] N. K.  Nikolskii: Treatise on the Shift Operator. Springer-Verlag, Berlin, Heidelberg and New York, 1986. | MR

[33] L.  Page: Bounded and compact vectorial Hankel operators. Trans. Amer. Math. Soc. 150 (1970), 529–539. | DOI | MR | Zbl

[34] V. V.  Peller: Vectorial Hankel operators, commutators and related operators of the Schatten-von Neumann class $\sigma _p$. Integral Equations Operator Theory 5 (1982), 244–272. | DOI | MR

[35] S. C.  Power: Hankel Operators on Hilbert Space. Res. Notes Math., vol. 64, Pitman, Boston, London and Melbourne, 1982. | MR | Zbl

[36] V.  Pták: Factorization of Toeplitz and Hankel operators. Math. Bohem. 122 (1997), 131–145. | MR

[37] V.  Pták, P. Vrbová: Operators of Toeplitz and Hankel type. Acta Sci. Math. (Szeged) 52 (1988), 117–140. | MR

[38] V.  Pták, P. Vrbová: Lifting intertwining dilations. Integral Equations Operator Theory 11 (1988), 128–147. | DOI | MR

[39] M.  Rosenblum: Self-adjoint Toeplitz operators. Summer Institute of Spectral Theory and Statistical Mechanics 1965 (1966), Broohhaven National Laboratory, Upton, N. Y. | Zbl

[40] B.  Sz.-Nagy, C.  Foiaş: Harmonic Analysis of Operators on Hilbert Space. Akadémiai Kiadó and North-Holland, Budapest and Amsterdam, 1970. | MR

[41] B.  Sz.-Nagy, C.  Foiaş: An application of dilation theory to hyponormal operators. Acta Sci. Math. (Szeged) 37 (1975), 155–159. | MR

[42] B.  Sz.-Nagy, C.  Foiaş: Toeplitz type operators and hyponormality. Dilation Theory, Toeplitz Operators and Other Topics, Operator Theory: Adv. Appl. vol. 11, Birkhäuser-Verlag, Basel, Berlin and Boston, 1983, pp. 371–378. | MR

[43] N.  Young: An Introduction to Hilbert Space. Cambridge University Press, Cambridge, 1988. | MR | Zbl

[44] D.  Zheng: Hankel operators and Toeplitz operators on the Bergman space. J.  Funct. Anal. 83 (1989), 98–120. | DOI | MR | Zbl

[45] D.  Zheng: Toeplitz operators and Hankel operators on the Hardy space of the unit sphere. J.  Funct. Anal. 149 (1997), 1–24. | DOI | MR | Zbl

[46] K.  Zhu: Operator Theory in Function Spaces. Pure Appl, Math. vol. 139, Marcel Dekker, Basel and New York, 1990. | MR | Zbl