Oscillatory properties of second order half-linear difference equations
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 303-321 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study oscillatory properties of the second order half-linear difference equation \[ \Delta (r_k|\Delta y_k|^{\alpha -2}\Delta y_k)-p_k|y_{k+1}|^{\alpha -2}y_{k+1}=0, \quad \alpha >1. \qquad \mathrm{(HL)}\] It will be shown that the basic facts of oscillation theory for this equation are essentially the same as those for the linear equation \[ \Delta (r_k\Delta y_k)-p_ky_{k+1}=0. \] We present here the Picone type identity, Reid Roundabout Theorem and Sturmian theory for equation (HL). Some oscillation criteria are also given.
We study oscillatory properties of the second order half-linear difference equation \[ \Delta (r_k|\Delta y_k|^{\alpha -2}\Delta y_k)-p_k|y_{k+1}|^{\alpha -2}y_{k+1}=0, \quad \alpha >1. \qquad \mathrm{(HL)}\] It will be shown that the basic facts of oscillation theory for this equation are essentially the same as those for the linear equation \[ \Delta (r_k\Delta y_k)-p_ky_{k+1}=0. \] We present here the Picone type identity, Reid Roundabout Theorem and Sturmian theory for equation (HL). Some oscillation criteria are also given.
Classification : 39A10, 39A11
Keywords: half-linear difference equation; Picone identity; Reid Roundabout Theorem; oscillation criteria
@article{CMJ_2001_51_2_a6,
     author = {\v{R}eh\'ak, Pavel},
     title = {Oscillatory properties of second order half-linear difference equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {303--321},
     year = {2001},
     volume = {51},
     number = {2},
     mrnumber = {1844312},
     zbl = {0982.39004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a6/}
}
TY  - JOUR
AU  - Řehák, Pavel
TI  - Oscillatory properties of second order half-linear difference equations
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 303
EP  - 321
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a6/
LA  - en
ID  - CMJ_2001_51_2_a6
ER  - 
%0 Journal Article
%A Řehák, Pavel
%T Oscillatory properties of second order half-linear difference equations
%J Czechoslovak Mathematical Journal
%D 2001
%P 303-321
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a6/
%G en
%F CMJ_2001_51_2_a6
Řehák, Pavel. Oscillatory properties of second order half-linear difference equations. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 303-321. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a6/

[1] R. P. Agarwal: Difference equations and inequalities, theory, methods, and applications, the second edition. Pure and Appl. Math, M. Dekker, New York-Basel-Hong Kong, 2000. | MR

[2] C. D. Ahlbrandt and A. C. Peterson: Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations. Kluwer Academic Publishers, Boston, 1996. | MR

[3] O. Došlý: Oscillation criteria for higher order Sturm-Liouville difference equations. J.  Differ. Equations Appl. 4 (1998), 425–450. | DOI | MR

[4] O. Došlý: Oscillation criteria for half-linear second order differential equations. Hiroshima Math. J. 28 (1998), 507–521. | DOI | MR

[5] O. Došlý: A remark on conjugacy of half-linear second order differential equations. Math. Slovaca 50 (2000), 67–79. | MR

[6] O.  Došlý and P. Řehák: Nonoscillation criteria for second order half-linear difference equations. Comput. Math. Appl, In press.

[7] Á. Elbert: A half-linear second order differential equations. Colloq. Math. Soc. János Bolayi 30 (1979), 158–180.

[8] Á. Elbert and T. Kusano: Principal solutions of nonoscillatory half-linear differential equations. Adv. Math. Sci. Appl. (Tokyo) 8 (1998), 745–759. | MR

[9] J. Jaroš and T. Kusano: A Picone type identity for second order half-linear differential equations. Acta Math. Univ. Comenian. (N. S.) 68 (1999), 137–151. | MR

[10] W. G. Kelley and A. Peterson: Difference Equations: An Introduction with Applications. Acad. Press, San Diego, 1991. | MR

[11] J. D. Mirzov: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems. J. Math. Anal. Appl. 3 (1976), 418–425. | MR | Zbl

[12] J. D. Mirzov: Principial and nonprincipial solutions of a nonoscillatory system. Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. | MR

[13] P. Řehák: Half-linear discrete oscillation theory. In: Proceedings of 6th Colloquium on the qualitative theory of DE, Szeged 1999, http://www.math.u-szeged.hu/ejqtde/index.html, EJQTDE, Szeged, 2000, pp. 1–14. | MR

[14] P.  Řehák: Half-linear dynamic equations on time scales: IVP and oscillatory properties. Submitted.

[15] P. Řehák: Hartman-Wintner type lemma, oscillation and conjugacy criteria for half-linear difference equations. J. Math. Anal. Appl. 252 (2000), 813–827. | DOI | MR

[16] P.  Řehák: Oscillation criteria for second order half-linear difference equations. J. Differ. Equations Appl, In press. | MR