On the best ranges for $A^+_p$ and $RH_r^+$
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 285-301 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we study the relationship between one-sided reverse Hölder classes $RH_r^+$ and the $A_p^+$ classes. We find the best possible range of $RH_r^+$ to which an $A_1^+$ weight belongs, in terms of the $A_1^+$ constant. Conversely, we also find the best range of $A_p^+$ to which a $RH_\infty ^+$ weight belongs, in terms of the $RH_\infty ^+$ constant. Similar problems for $A_p^+$, $1
In this paper we study the relationship between one-sided reverse Hölder classes $RH_r^+$ and the $A_p^+$ classes. We find the best possible range of $RH_r^+$ to which an $A_1^+$ weight belongs, in terms of the $A_1^+$ constant. Conversely, we also find the best range of $A_p^+$ to which a $RH_\infty ^+$ weight belongs, in terms of the $RH_\infty ^+$ constant. Similar problems for $A_p^+$, $1$ and $RH_r^+$, $1$ are solved using factorization.
Classification : 42B25
Keywords: one-sided weights; one-sided reverse Hölder; factorization
@article{CMJ_2001_51_2_a5,
     author = {Riveros, M. S. and Torre, A. de la},
     title = {On the best ranges for $A^+_p$ and $RH_r^+$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {285--301},
     year = {2001},
     volume = {51},
     number = {2},
     mrnumber = {1844311},
     zbl = {0980.42015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a5/}
}
TY  - JOUR
AU  - Riveros, M. S.
AU  - Torre, A. de la
TI  - On the best ranges for $A^+_p$ and $RH_r^+$
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 285
EP  - 301
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a5/
LA  - en
ID  - CMJ_2001_51_2_a5
ER  - 
%0 Journal Article
%A Riveros, M. S.
%A Torre, A. de la
%T On the best ranges for $A^+_p$ and $RH_r^+$
%J Czechoslovak Mathematical Journal
%D 2001
%P 285-301
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a5/
%G en
%F CMJ_2001_51_2_a5
Riveros, M. S.; Torre, A. de la. On the best ranges for $A^+_p$ and $RH_r^+$. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 285-301. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a5/

[1] H. Aimar, L. Forzani and F. J. Martín-Reyes: On weighted inequalities for one-sided singular integrals. Proc. Amer. Math. Soc. 125 (1997), 2057–2064. | DOI | MR

[2] D. Cruz-Uribe and C. J. Neugebauer: The structure of reverse Hölder classes. Trans. Amer. Math. Soc. 347 (1995), 2941–2960. | MR

[3] D. Cruz-Uribe, C. J. Neugebauer and V. Olesen: The one-sided minimal operator and the one-sided reverse Hölder inequality. Stud. Math 116 (1995), 255–270. | DOI | MR

[4] P. Guan and E. Sawyer: Regularity estimates for oblique derivative problem. Anal. of Mathematics, Second Series 157 (1) (1993), 1–70. | DOI | MR

[5] F. J. Martín-Reyes: New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions. Proc. Amer. Math. Soc. 117, 691–698. | DOI | MR

[6] F. J. Martín-Reyes, P. Ortega and A. de la Torre: Weighted inequalities for one-sided maximal functions. Trans. Amer. Math. Soc. 319 (2) (1990), 517–534. | DOI | MR

[7] F. J. Martín-Reyes, L. Pick and A. de la Torre: $A^+_\infty $ condition. Canad. J. Math. 45 (6) (1993), 1231–1244. | MR

[8] C. J. Neugebauer: The precise range of indices for the $RH_r$ and $A_p$ weight classes. Preprint (), .

[9] E. Sawyer: Weighted inequalities for the one-sided Hardy-Littlewood maximal function. Trans. Amer. Math. Soc. 297 (1986), 53–61. | DOI | MR