On Rusakov’s $n$-ary $rs$-groups
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 275-283
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Properties of $n$-ary groups connected with the affine geometry are considered. Some conditions for an $n$-ary $rs$-group to be derived from a binary group are given. Necessary and sufficient conditions for an $n$-ary group $\theta ,b>$-derived from an additive group of a field to be an $rs$-group are obtained. The existence of non-commutative $n$-ary $rs$-groups which are not derived from any group of arity $m2$ is proved.
Properties of $n$-ary groups connected with the affine geometry are considered. Some conditions for an $n$-ary $rs$-group to be derived from a binary group are given. Necessary and sufficient conditions for an $n$-ary group $\theta ,b>$-derived from an additive group of a field to be an $rs$-group are obtained. The existence of non-commutative $n$-ary $rs$-groups which are not derived from any group of arity $m$ for every $n\ge 3$, $r>2$ is proved.
Classification : 20N15, 51A25, 51D15
Keywords: $n$-ary group; symmetry
@article{CMJ_2001_51_2_a4,
     author = {Dudek, Wies{\l}aw A. and Stojakovi\'c, Zoran},
     title = {On {Rusakov{\textquoteright}s} $n$-ary $rs$-groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {275--283},
     year = {2001},
     volume = {51},
     number = {2},
     mrnumber = {1844310},
     zbl = {0983.20067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a4/}
}
TY  - JOUR
AU  - Dudek, Wiesław A.
AU  - Stojaković, Zoran
TI  - On Rusakov’s $n$-ary $rs$-groups
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 275
EP  - 283
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a4/
LA  - en
ID  - CMJ_2001_51_2_a4
ER  - 
%0 Journal Article
%A Dudek, Wiesław A.
%A Stojaković, Zoran
%T On Rusakov’s $n$-ary $rs$-groups
%J Czechoslovak Mathematical Journal
%D 2001
%P 275-283
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a4/
%G en
%F CMJ_2001_51_2_a4
Dudek, Wiesław A.; Stojaković, Zoran. On Rusakov’s $n$-ary $rs$-groups. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 275-283. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a4/

[11] R. Baer: Linear Algebra and Projective Geometry. Academic Press, New York, 1952. | MR | Zbl

[12] D. Brǎnzei: Structures affines et opérations ternaires. An. Ştiinţ. Univ. Iaşi Sect. I a Mat. (N.S.) 23 (1977), 33–38. | MR

[9] J. Certaine: The ternary operation $(abc)=ab^{-1}c $ of a group. Bull. Amer. Math. Soc. 49 (1943), 869–877. | DOI | MR

[6] W. Dörnte: Untersuchungen über einen verallgemeinerten Gruppenbegriff. Math. Z. 29 (1928), 1–19. | DOI

[2] W. A. Dudek: Remarks on $n$-groups. Demonstratio Math. 13 (1980), 165–181. | MR | Zbl

[3] W. A. Dudek: Varieties of polyadic groups. Filomat 9 (1995), 657–674. | MR | Zbl

[7] W. A. Dudek: On the class of weakly semiabelian polyadic groups. Diskret. Mat. 8 (1996), 40–46. (Russian) | MR | Zbl

[1] W. A. Dudek, B. Gleichgewicht and K. Głazek: A note on the axioms of $n$-groups. Colloquia Math. Soc. János Bolyai, 29. Universal Algebra, Esztergom (Hungary), 1977, pp. 195–202.

[8] W. A. Dudek and J. Michalski: On retracts of polyadic groups. Demonstratio Math. 17 (1984), 281–301. | MR

[16] J. I. Kulachgenko: Geometry of parallelograms. Vopr. Algeb. and Prik. Mat., Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, pp. 47–64. (Russian)

[10] H. Prüfer: Theorie der Abelschen Gruppen. Math. Z. 20 (1924), 166–187. | DOI | MR

[4] S. A. Rusakov: A definition of $n$-ary group. Dokl. Akad. Nauk Belarusi 23 (1972), 965–967. (Russian) | MR

[5] S. A. Rusakov: Existence of $n$-ary $rs$-groups. Voprosy Algebry 6 (1992), 89–92. (Russian) | MR

[15] S. A. Rusakov: Vectors of $n$-ary groups. Linear operations and their properties. Vopr. Algeb. and Prik., Mat. Izdat. Belorus. Gos. Univ. Transp., Gomel, 1995, pp. 10–30. (Russian)

[13] W. Szmielew: From the Affine to Euclidean Geometry (Polish edition). PWN Warszawa, 1981. | MR

[14] W. Szmielew: Theory of $n$-ary equivalences and its application to geometry. Dissertationes Math. 191 (1980).

[17] L. Takhtajan: On foundation of the generalized Nambu mechanics. Comm. Math. Phys. 160 (1994), 295–315. | DOI | MR | Zbl

[18] L. Vainerman and R. Kerner: On special classes of $n$-algebras. J. Math. Phys. 37 (1996), 2553–2565. | DOI | MR