The all-paths transit function of a graph
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 439-448
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
A transit function $R$ on a set $V$ is a function $R\:V\times V\rightarrow 2^{V}$ satisfying the axioms $u\in R(u,v)$, $R(u,v)=R(v,u)$ and $R(u,u)=\lbrace u\rbrace $, for all $u,v \in V$. The all-paths transit function of a connected graph is characterized by transit axioms.
A transit function $R$ on a set $V$ is a function $R\:V\times V\rightarrow 2^{V}$ satisfying the axioms $u\in R(u,v)$, $R(u,v)=R(v,u)$ and $R(u,u)=\lbrace u\rbrace $, for all $u,v \in V$. The all-paths transit function of a connected graph is characterized by transit axioms.
Classification :
05C12, 05C75, 05C99
Keywords: all-paths convexity; transit function; block graph
Keywords: all-paths convexity; transit function; block graph
@article{CMJ_2001_51_2_a16,
author = {Changat, Manoj and Klav\v{z}ar, Sandi and Mulder, Henry Martyn},
title = {The all-paths transit function of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {439--448},
year = {2001},
volume = {51},
number = {2},
mrnumber = {1844322},
zbl = {0977.05135},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a16/}
}
Changat, Manoj; Klavžar, Sandi; Mulder, Henry Martyn. The all-paths transit function of a graph. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 439-448. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a16/