The all-paths transit function of a graph
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 439-448 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A transit function $R$ on a set $V$ is a function $R\:V\times V\rightarrow 2^{V}$ satisfying the axioms $u\in R(u,v)$, $R(u,v)=R(v,u)$ and $R(u,u)=\lbrace u\rbrace $, for all $u,v \in V$. The all-paths transit function of a connected graph is characterized by transit axioms.
A transit function $R$ on a set $V$ is a function $R\:V\times V\rightarrow 2^{V}$ satisfying the axioms $u\in R(u,v)$, $R(u,v)=R(v,u)$ and $R(u,u)=\lbrace u\rbrace $, for all $u,v \in V$. The all-paths transit function of a connected graph is characterized by transit axioms.
Classification : 05C12, 05C75, 05C99
Keywords: all-paths convexity; transit function; block graph
@article{CMJ_2001_51_2_a16,
     author = {Changat, Manoj and Klav\v{z}ar, Sandi and Mulder, Henry Martyn},
     title = {The all-paths transit function of a graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {439--448},
     year = {2001},
     volume = {51},
     number = {2},
     mrnumber = {1844322},
     zbl = {0977.05135},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a16/}
}
TY  - JOUR
AU  - Changat, Manoj
AU  - Klavžar, Sandi
AU  - Mulder, Henry Martyn
TI  - The all-paths transit function of a graph
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 439
EP  - 448
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a16/
LA  - en
ID  - CMJ_2001_51_2_a16
ER  - 
%0 Journal Article
%A Changat, Manoj
%A Klavžar, Sandi
%A Mulder, Henry Martyn
%T The all-paths transit function of a graph
%J Czechoslovak Mathematical Journal
%D 2001
%P 439-448
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a16/
%G en
%F CMJ_2001_51_2_a16
Changat, Manoj; Klavžar, Sandi; Mulder, Henry Martyn. The all-paths transit function of a graph. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 439-448. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a16/

[1] P.  Duchet: Convexity in combinatorial structures. Rend. Circ. Mat. Palermo  (2) Suppl. 14 (1987), 261–293. | MR | Zbl

[2] P.  Duchet: Convex sets in graphs  II. Minimal path convexity. J.  Combin. Theory Ser.  B 44 (1988), 307–316. | DOI | MR | Zbl

[3] J.  Calder: Some elementary properties of interval convexities. J.  London Math. Soc. 3 (1971), 422–428. | DOI | MR | Zbl

[4] M.  Farber and R. E.  Jamison: Convexity in graphs and hypergraphs. SIAM J.  Algebraic Discrete Methods 7 (1986), 433–444. | DOI | MR

[5] S.  Klavžar and H. M.  Mulder: Median graphs: characterizations, location theory and related structures. J.  Combin. Math. Combin. Comput. 30 (1999), 103–127. | MR

[6] H. M.  Mulder: The Interval Function of a Graph. Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980. | MR | Zbl

[7] H. M.  Mulder: Transit functions on graphs. In preparation. | Zbl

[8] M. A.  Morgana and H. M.  Mulder: The induced path convexity, betweenness, and svelte graphs. Discrete Math (to appear). | MR

[9] L.  Nebeský: A characterization of the interval function of a connected graph. Czechoslovak Math.  J. 44(119) (1994), 173–178. | MR

[10] L.  Nebeský: Characterizing the interval function of a connected graph. Math. Bohem. 123(2) (1998), 137–144. | MR

[11] E.  Sampathkumar: Convex sets in graphs. Indian J. Pure Appl. Math. 15 (1984), 1065–1071. | MR

[12] M. L. J.  van de Vel: Theory of Convex Structures. North Holland, Amsterdam, 1993. | MR