Keywords: all-paths convexity; transit function; block graph
@article{CMJ_2001_51_2_a16,
author = {Changat, Manoj and Klav\v{z}ar, Sandi and Mulder, Henry Martyn},
title = {The all-paths transit function of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {439--448},
year = {2001},
volume = {51},
number = {2},
mrnumber = {1844322},
zbl = {0977.05135},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a16/}
}
Changat, Manoj; Klavžar, Sandi; Mulder, Henry Martyn. The all-paths transit function of a graph. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 439-448. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a16/
[1] P. Duchet: Convexity in combinatorial structures. Rend. Circ. Mat. Palermo (2) Suppl. 14 (1987), 261–293. | MR | Zbl
[2] P. Duchet: Convex sets in graphs II. Minimal path convexity. J. Combin. Theory Ser. B 44 (1988), 307–316. | DOI | MR | Zbl
[3] J. Calder: Some elementary properties of interval convexities. J. London Math. Soc. 3 (1971), 422–428. | DOI | MR | Zbl
[4] M. Farber and R. E. Jamison: Convexity in graphs and hypergraphs. SIAM J. Algebraic Discrete Methods 7 (1986), 433–444. | DOI | MR
[5] S. Klavžar and H. M. Mulder: Median graphs: characterizations, location theory and related structures. J. Combin. Math. Combin. Comput. 30 (1999), 103–127. | MR
[6] H. M. Mulder: The Interval Function of a Graph. Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980. | MR | Zbl
[7] H. M. Mulder: Transit functions on graphs. In preparation. | Zbl
[8] M. A. Morgana and H. M. Mulder: The induced path convexity, betweenness, and svelte graphs. Discrete Math (to appear). | MR
[9] L. Nebeský: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44(119) (1994), 173–178. | MR
[10] L. Nebeský: Characterizing the interval function of a connected graph. Math. Bohem. 123(2) (1998), 137–144. | MR
[11] E. Sampathkumar: Convex sets in graphs. Indian J. Pure Appl. Math. 15 (1984), 1065–1071. | MR
[12] M. L. J. van de Vel: Theory of Convex Structures. North Holland, Amsterdam, 1993. | MR