Strict topologies as topological algebras
Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 433-437 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $X$ be a completely regular Hausdorff space, $C_{b}(X)$ the space of all scalar-valued bounded continuous functions on $X$ with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally $m$-convex.
Let $X$ be a completely regular Hausdorff space, $C_{b}(X)$ the space of all scalar-valued bounded continuous functions on $X$ with strict topologies. We prove that these are locally convex topological algebras with jointly continuous multiplication. Also we find the necessary and sufficient conditions for these algebras to be locally $m$-convex.
Classification : 28B05, 28C15, 46E10, 46E25, 46G10, 46H05, 46J10
Keywords: strict topologies; locally convex algebras; locally $m$-convex algebras
@article{CMJ_2001_51_2_a15,
     author = {Khurana, Surjit Singh},
     title = {Strict topologies as topological algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {433--437},
     year = {2001},
     volume = {51},
     number = {2},
     mrnumber = {1844321},
     zbl = {0983.46025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a15/}
}
TY  - JOUR
AU  - Khurana, Surjit Singh
TI  - Strict topologies as topological algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2001
SP  - 433
EP  - 437
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a15/
LA  - en
ID  - CMJ_2001_51_2_a15
ER  - 
%0 Journal Article
%A Khurana, Surjit Singh
%T Strict topologies as topological algebras
%J Czechoslovak Mathematical Journal
%D 2001
%P 433-437
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a15/
%G en
%F CMJ_2001_51_2_a15
Khurana, Surjit Singh. Strict topologies as topological algebras. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 433-437. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a15/

[1] Alan C. Cochran: Topological algebras and Mackey topologies. Proc. Amer. Math. Soc. 30 (1971), 115, 119. | DOI | MR

[2] H. S. Collins and R. Fontenot: Approximate identities and strict topology. Pacific J.  Math. 43 (1972), 63–79. | DOI | MR

[3] L. Gillman and M. Jerrison: Rings of Continuous Functions. D. Van Nostrand, 1960. | MR

[4] D. Gulick: $\sigma $-compact-open topology and its relatives. Math. Scand. 30 (1972), 159–176. | DOI | MR | Zbl

[5] S. S. Khurana: Topologies on spaces of continuous vector-valued functions. Trans. Amer. Math. Soc. 241 (1978), 195–211. | DOI | MR

[6] S. S. Khurana and S. A.  Othman: Grothendieck measures. J.  London Math. Soc. 39 (1989), 481–486. | MR

[7] G. Koumoullis: Perfect, $u$-additive measures and strict topologies. Illinois J.  Math. (1982). | MR | Zbl

[8] E. A. Michael: Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., No. 11 (1952). | MR | Zbl

[9] V. Pták: Weak compactness in convex topological spaces. Czechoslovak Math.  J. 4 (1954), 175–186. | MR

[10] H. H. Schaeffer: Topological Vector Spaces. Springer-Verlag, 1986.

[11] F. D. Sentilles: Bounded continuous functions on completely regular spaces. Trans. Amer. Math. Soc. 168 (1972), 311–336. | DOI | MR

[12] C. Sunyach: Une caracterisation des espaces universellement Radon measurables. C.  R.  Acad. Sci. Paris 268 (1969), 864–866. | MR

[13] R. F. Wheeler: Survey of Baire measures and strict topologies. Exposition. Math. 2 (1983), 97–190. | MR | Zbl

[14] V. S. Varadarajan: Measures on topological spaces. Amer. Math. Soc. Transl. 48 (1965), 161–220. | DOI