Keywords: semigroup; regular; completely semisimple; completely regular; band of groups; normal band of groups; partial order; compatible with multiplication; coincidence of relations
@article{CMJ_2001_51_2_a14,
author = {Petrich, Mario},
title = {Certain partial orders on semigroups},
journal = {Czechoslovak Mathematical Journal},
pages = {415--432},
year = {2001},
volume = {51},
number = {2},
mrnumber = {1844320},
zbl = {0983.20056},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a14/}
}
Petrich, Mario. Certain partial orders on semigroups. Czechoslovak Mathematical Journal, Tome 51 (2001) no. 2, pp. 415-432. http://geodesic.mathdoc.fr/item/CMJ_2001_51_2_a14/
[1] W. D. Burgess and R. Raphael: On Conrad’s partial order relation on semiprime rings and on semigroups. Semigroup Forum 16 (1978), 133–140. | DOI | MR
[2] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, Vol I. Math. Surveys No. 7, Amer. Math. Soc., Providence, 1961. | MR
[3] P. F. Conrad: The hulls of semiprime rings. Bull. Austral. Math. Soc. 12 (1975), 311–314. | DOI | MR | Zbl
[4] M. P. Drazin: A partial order in completely regular semigroups. J. Algebra 98 (1986), 362–374. | DOI | MR | Zbl
[5] R. E. Hartwig: How to partially order regular elements. Math. Japon. 25 (1980), 1–13. | MR | Zbl
[6] E. Hewitt and H. S. Zuckerman: The $l_1$-algebra of a commutative semigroup. Trans. Amer. Math. Soc. 83 (1956), 70–97. | MR
[7] H. Mitsch: A natural partial order for semigroups. Proc. Amer. Math. Soc. 97 (1986), 384–388. | DOI | MR | Zbl
[8] K. S. S. Nambooripad: The natural partial order on a regular semigroup. Proc. Edinburgh Math. Soc. 23 (1980), 249–260. | MR | Zbl
[9] M. Petrich: Regular semigroups satisfying certain conditions on idempotents and ideals. Trans. Amer. Math. Soc. 170 (1972), 245–269. | DOI | MR | Zbl
[10] M. Petrich: Introduction to Semigroups. Merrill. Columbus, Ohio, 1973, pp. . | MR | Zbl
[11] M. Petrich: Inverse Semigroups. Wiley, New York, 1984, pp. . | MR | Zbl
[12] V. V. Rasin: On the variety of Cliffordean semigroups. Semigroup Forum 23 (1981), 201–220. | DOI | MR
[13] I. Sussman: A generalization of Boolean rings. Math. Ann. 136 (1958), 326–338. | DOI | MR | Zbl